Distinct Numerical Solutions for Elliptic Cross-Interface Problems Using Finite Element and Finite Difference Methods

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org (Nov 1, 2024), p. n/a
1. Verfasser: Feng, Qiwei
Veröffentlicht:
Cornell University Library, arXiv.org
Schlagworte:
Online-Zugang:Citation/Abstract
Full text outside of ProQuest
Tags: Tag hinzufügen
Keine Tags, Fügen Sie das erste Tag hinzu!

MARC

LEADER 00000nab a2200000uu 4500
001 3095277791
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3095277791 
045 0 |b d20241101 
100 1 |a Feng, Qiwei 
245 1 |a Distinct Numerical Solutions for Elliptic Cross-Interface Problems Using Finite Element and Finite Difference Methods 
260 |b Cornell University Library, arXiv.org  |c Nov 1, 2024 
513 |a Working Paper 
520 3 |a In this paper, we discuss the second-order finite element method (FEM) and finite difference method (FDM) for numerically solving elliptic cross-interface problems characterized by vertical and horizontal straight lines, piecewise constant coefficients, two homogeneous jump conditions, continuous source terms, and Dirichlet boundary conditions. For brevity, we consider a 2D simplified version where the intersection points of the interface lines coincide with grid points in uniform Cartesian grids. Our findings reveal interesting and important results: (1) When the coefficient functions exhibit either high jumps with low-frequency oscillations or low jumps with high-frequency oscillations, the finite element method and finite difference method yield similar numerical solutions. (2) However, when the interface problems involve high-contrast and high-frequency coefficient functions, the numerical solutions obtained from the finite element and finite difference methods differ significantly. Given that the widely studied SPE10 benchmark problem (see https://www.spe.org/web/csp/datasets/set02.htm) typically involves high-contrast and high-frequency permeability due to varying geological layers in porous media, this phenomenon warrants attention. Furthermore, this observation is particularly important for developing multiscale methods, as reference solutions for these methods are usually obtained using the standard second-order finite element method with a fine mesh, and analytical solutions are not available. We provide sufficient details to enable replication of our numerical results, and the implementation is straightforward. This simplicity ensures that readers can easily confirm the validity of our findings. 
653 |a Boundary conditions 
653 |a Finite element method 
653 |a Exact solutions 
653 |a Porous media 
653 |a Finite element analysis 
653 |a Methods 
653 |a Mathematical analysis 
653 |a Straight lines 
653 |a Oscillations 
653 |a Multiscale analysis 
653 |a Finite difference method 
773 0 |t arXiv.org  |g (Nov 1, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3095277791/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2408.10459