The application effect of the Rasch measurement model combined with the CRF model: An analysis based on English discourse

Guardado en:
Bibliografiske detaljer
Udgivet i:PLoS One vol. 19, no. 8 (Aug 2024), p. e0309001
Hovedforfatter: Wang, Yunxia
Udgivet:
Public Library of Science
Fag:
Online adgang:Citation/Abstract
Full Text
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3096038133
003 UK-CbPIL
022 |a 1932-6203 
024 7 |a 10.1371/journal.pone.0309001  |2 doi 
035 |a 3096038133 
045 2 |b d20240801  |b d20240831 
084 |a 174835  |2 nlm 
100 1 |a Wang, Yunxia 
245 1 |a The application effect of the Rasch measurement model combined with the CRF model: An analysis based on English discourse 
260 |b Public Library of Science  |c Aug 2024 
513 |a Journal Article 
520 3 |a To analyze English discourse more accurately and provide more detailed feedback information, this study applies Rasch measurement and Conditional Random Field (CRF) models to English discourse analysis. The Rasch measurement model is widely used to evaluate and quantify the potential traits of individuals, and it has remarkable advantages in measurement and evaluation. By combining the CRF model, the Rasch model is employed to model the structural and semantic information in the discourse and use this model to carry out sequence labeling, to enhance the ability to capture the internal relations of the discourse. Finally, this study conducts comparative experiments on integrating the Rasch measurement and CRF models, comparing the outcomes against traditional scoring methods and the standalone CRF model. The research findings indicate that: (1) The discourse component syntactic analysis model on the Penn Treebank (PTB) database obtained Unlabeled Attachment Score (UAS) values of 94.07, 95.76, 95.67, and 95.43, and Labeled Attachment Score (LAS) values of 92.47, 92.33, 92.49, and 92.46 for the LOC, CRF, CRF2O, and MFVI models, respectively. After adding the Rasch measurement model, the UAS values of the four models on the PTB database are 96.85, 96.77, 96.92, and 96.78 for the LOC, CRF, CRF2O, and MFVI models, respectively, with LAS values of 95.33, 95.34, 95.39, and 95.32, all showing significant improvement. (2) By combining contextual information with CRF models, students can better understand their discourse expression, capture the connections between English discourse sentences, and analyze English discourse more comprehensively. This study provides new ideas and methods for researchers in English language education and linguistics. 
653 |a Databases 
653 |a Software 
653 |a Accuracy 
653 |a Feedback 
653 |a English language 
653 |a Random variables 
653 |a Models 
653 |a Computerized corpora 
653 |a Language proficiency 
653 |a Conditional random fields 
653 |a Language instruction 
653 |a Discourse analysis 
653 |a Rasch model 
653 |a Syntactic analysis 
653 |a Performance evaluation 
653 |a Health literacy 
653 |a Linguistics 
653 |a Semantics 
653 |a Health education 
653 |a Text analysis 
653 |a Teaching methods 
653 |a Methods 
653 |a Drones 
653 |a Experiments 
653 |a Values 
653 |a Measurement 
653 |a Labeling 
653 |a Information 
653 |a Scores 
653 |a Contextual information 
653 |a Economic 
773 0 |t PLoS One  |g vol. 19, no. 8 (Aug 2024), p. e0309001 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3096038133/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3096038133/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3096038133/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch