Prompto: An open source library for asynchronous querying of LLM endpoints

Збережено в:
Бібліографічні деталі
Опубліковано в::arXiv.org (Dec 16, 2024), p. n/a
Автор: Chan, Ryan Sze-Yin
Інші автори: Nanni, Federico, Williams, Angus R, Brown, Edwin, Burke-Moore, Liam, Chapman, Ed, Onslow, Kate, Sippy, Tvesha, Bright, Jonathan, Gabasova, Evelina
Опубліковано:
Cornell University Library, arXiv.org
Предмети:
Онлайн доступ:Citation/Abstract
Full text outside of ProQuest
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!
Опис
Короткий огляд:Recent surge in Large Language Model (LLM) availability has opened exciting avenues for research. However, efficiently interacting with these models presents a significant hurdle since LLMs often reside on proprietary or self-hosted API endpoints, each requiring custom code for interaction. Conducting comparative studies between different models can therefore be time-consuming and necessitate significant engineering effort, hindering research efficiency and reproducibility. To address these challenges, we present prompto, an open source Python library which facilitates asynchronous querying of LLM endpoints enabling researchers to interact with multiple LLMs concurrently, while maximising efficiency and utilising individual rate limits. Our library empowers researchers and developers to interact with LLMs more effectively and allowing faster experimentation, data generation and evaluation. prompto is released with an introductory video (https://youtu.be/lWN9hXBOLyQ) under MIT License and is available via GitHub (https://github.com/alan-turing-institute/prompto).
ISSN:2331-8422
Джерело:Engineering Database