MARC

LEADER 00000nab a2200000uu 4500
001 3096567579
003 UK-CbPIL
022 |a 0090-0036 
022 |a 0002-9572 
022 |a 0271-4353 
022 |a 0273-1975 
035 |a 3096567579 
045 2 |b d20240901  |b d20240930 
084 |a 8  |2 nlm 
100 1 |a Keenum, Ishi, PhD  |u Civil, Environmental, and Geospatial Department, Michigan Technological University, Houghton 
245 1 |a Optimizing Wastewater Surveillance: The Necessity of Standardized Reporting and Proficiency for Public Health 
260 |b American Public Health Association  |c Sep 2024 
513 |a Journal Article 
520 3 |a Wastewater-based surveillance (WBS) has emerged as a valuable tool for public health, allowing a greater understanding of disease prevalence in communities. With historical significance in monitoring polio transmission,1 WBS gained further prominence in 2020 by enhancing the population-level monitoring of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) trends.2,3 Since then, WBS has been used to track diseases such as influenza,4 respiratory syncytial virus,5 norovirus,6 and mpox. The global implementation of WBS signifies its movement from a research initiative to a staple public health tool, which is especially critical for virus monitoring. However, the diverse methodologies adopted for WBS present challenges. Although each method may address specific stakeholder needs, the lack of standardized reporting guidelines and external validation limits the scope and utility of the data.A key advantage of WBS is that it enables public health authorities at the state and federal levels to determine where to allocate resources, ideally before a wider spread outbreak. Data aggregation is possible only when metrics such as target concentration and recovery are reported in the same concentrations and with similar driving calculations. This concern is amplified when data from a variety of methods are aggregated at a state, national, or global scale. Therefore, our objective is to promote standardized reporting guidelines in WBS as a critical part of a public health framework. 
610 4 |a International Organization for Standardization 
651 4 |a Europe 
651 4 |a United States--US 
653 |a Health surveillance 
653 |a Pathogens 
653 |a Accuracy 
653 |a Severe acute respiratory syndrome coronavirus 2 
653 |a Disease 
653 |a Accreditation 
653 |a Influenza 
653 |a Medical laboratories 
653 |a Respiratory syncytial virus 
653 |a International organizations 
653 |a Quality standards 
653 |a Epidemics 
653 |a Public health 
653 |a Environmental monitoring 
653 |a Poliomyelitis 
653 |a Guidelines 
653 |a COVID-19 
653 |a Aggregate data 
653 |a Viral diseases 
653 |a Wastewater 
653 |a Data recovery 
653 |a Viruses 
653 |a Coronaviruses 
653 |a Data management 
653 |a Disease transmission 
653 |a Respiratory diseases 
653 |a Norovirus 
653 |a Mpox 
653 |a Severe acute respiratory syndrome 
653 |a Surveillance 
653 |a Resource allocation 
653 |a Morbidity 
653 |a Health authorities 
653 |a Competence 
653 |a Social 
700 1 |a Lin, Nancy J, PhD  |u Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, MD 
700 1 |a Logan-Jackson, Alshae, PhD  |u Biosystems and Biomaterials Division, National Institute of Standards and Technology, Gaithersburg, MD 
700 1 |a Gushgari, Adam J, PhD  |u Eurofins Pandemic Prevention Services, Sacramento, CA 
700 1 |a D'Souza, Nishita, PhD  |u Department of Fisheries and Wildlife, Michigan State University, East Lansing 
700 1 |a Steele, Joshua A, PhD 
700 1 |a Kaya, Devrim, PhD 
700 1 |a Gushgari, Lydia R, PhD 
773 0 |t American Journal of Public Health  |g vol. 114, no. 9 (Sep 2024), p. 859 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3096567579/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3096567579/fulltext/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3096567579/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch