Apache Spark for Analysis of Electronic Health Records: A Case Study of Diabetes Management

Tallennettuna:
Bibliografiset tiedot
Julkaisussa:Revue d'Intelligence Artificielle vol. 37, no. 6 (Dec 2023), p. 1521
Päätekijä: Sharma, Kanhaiya
Muut tekijät: Parashar, Deepak, Mengshetti, Om, Raasha Ahmad, Mital, Rewaa, Singh, Prerna, Thawani, Muskan
Julkaistu:
International Information and Engineering Technology Association (IIETA)
Aiheet:
Linkit:Citation/Abstract
Full Text - PDF
Tagit: Lisää tagi
Ei tageja, Lisää ensimmäinen tagi!

MARC

LEADER 00000nab a2200000uu 4500
001 3097441776
003 UK-CbPIL
022 |a 0992-499X 
022 |a 1958-5748 
024 7 |a 10.18280/ria.370616  |2 doi 
035 |a 3097441776 
045 2 |b d20231201  |b d20231231 
100 1 |a Sharma, Kanhaiya 
245 1 |a Apache Spark for Analysis of Electronic Health Records: A Case Study of Diabetes Management 
260 |b International Information and Engineering Technology Association (IIETA)  |c Dec 2023 
513 |a Case Study Journal Article 
520 3 |a Electronic Health Records (EHRs), heralded for their potential to revolutionize healthcare outcomes, function as repositories for invaluable data. This study offers a compelling exploration into the integration of Apache Spark for EHR analysis, with a specific focus on elevating diabetes care. Leveraging Apache Spark alongside a robust machine learning framework, we automated EHR analysis by processing extensive datasets, conducting thorough preprocessing, and extracting pertinent features. The inherent distributed processing capabilities of Apache Spark facilitated concurrent training and evaluation of machine learning models. Its in-memory data processing markedly reduced reliance on disk input/output, thereby enhancing performance and scalability. This methodology enabled swift and thorough EHR data analysis, with ensuing insights effectively visualized and reported. This empowered healthcare professionals to make informed decisions. The iterative nature of the process allowed for continuous refinement, enhancing healthcare outcomes based on insightful data. The synergy between Apache Spark and machine learning techniques in EHR analysis emerged as a potent and efficient strategy. This approach exhibits promise in significantly advancing healthcare outcomes by enabling effective prediction and management of diabetes, ultimately contributing to superior patient care and reducing healthcare costs. The findings underscore the transformative potential of integrating contemporary data analysis tools within the healthcare sector. 
653 |a Population 
653 |a Data processing 
653 |a Datasets 
653 |a Data mining 
653 |a Optimization techniques 
653 |a Chronic illnesses 
653 |a Data analysis 
653 |a Machine learning 
653 |a Distributed memory 
653 |a Electronic health records 
653 |a Distributed processing 
653 |a Clinical outcomes 
653 |a Case studies 
653 |a Big Data 
653 |a Cost analysis 
653 |a Health care 
653 |a Decision making 
653 |a Gestational diabetes 
653 |a Literature reviews 
653 |a Customization 
653 |a Precision medicine 
700 1 |a Parashar, Deepak 
700 1 |a Mengshetti, Om 
700 1 |a Raasha Ahmad 
700 1 |a Mital, Rewaa 
700 1 |a Singh, Prerna 
700 1 |a Thawani, Muskan 
773 0 |t Revue d'Intelligence Artificielle  |g vol. 37, no. 6 (Dec 2023), p. 1521 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3097441776/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3097441776/fulltextPDF/embedded/ZKJTFFSVAI7CB62C?source=fedsrch