The starting vortices generated by bodies with sharp and straight edges in a viscous fluid

Guardado en:
Detalles Bibliográficos
Publicado en:Journal of Fluid Mechanics vol. 992 (Aug 2024)
Autor principal: Sader, John E
Otros Autores: Hou, Wei, Hinton, Edward M, Pullin, DI, Colonius, Tim
Publicado:
Cambridge University Press
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3097669948
003 UK-CbPIL
022 |a 0022-1120 
022 |a 1469-7645 
024 7 |a 10.1017/jfm.2024.515  |2 doi 
035 |a 3097669948 
045 2 |b d20240801  |b d20240831 
084 |a 79037  |2 nlm 
100 1 |a Sader, John E  |u Graduate Aerospace Laboratories, California Institute of Technology, Pasadena, CA   91125, USA; Department of Applied Physics, California Institute of Technology, Pasadena, CA   91125, USA 
245 1 |a The starting vortices generated by bodies with sharp and straight edges in a viscous fluid 
260 |b Cambridge University Press  |c Aug 2024 
513 |a Journal Article 
520 3 |a A two-dimensional body that moves suddenly in a viscous fluid can instantly generate vortices at its sharp edges. Recent work using inviscid flow theory, based on the Birkhoff–Rott equation and the Kutta condition, predicts that the ‘starting vortices’ generated by the sharp and straight edges of a body – i.e. the vortices formed immediately after motion begins – can be one of three distinct self-similar types. We explore the existence of these starting vortices for a flat plate and two symmetric Joukowski aerofoils immersed in a viscous fluid, using high-fidelity direct numerical simulations (DNS) of the Navier–Stokes equations. A lattice Green's function method is employed and simulations are performed for chord Reynolds numbers ranging from 5040 to 45 255. Vortices generated at the leading and trailing edges of the flat plate show agreement with the derived inviscid theory, for which a detailed assessment is reported. Agreement is also observed for the two symmetric Joukowski aerofoils, demonstrating the utility of the inviscid theory for arbitrary bodies. While this inviscid theory predicts an abrupt transition between the starting-vortex types, DNS shows a smooth transition. This behaviour occurs for all Reynolds numbers and is related to finite-time effects – there is a maximal time for which the (self-similar) starting vortices exist. We confirm the inviscid prediction that the leading-edge starting vortex of a flat plate can be suppressed dynamically. This has implications for the performance of low-speed aircraft such as model aeroplanes, micro air vehicles and unmanned air vehicles. 
653 |a Unmanned aircraft 
653 |a Trailing edges 
653 |a Green's function 
653 |a Vortices 
653 |a Inviscid flow 
653 |a Airfoils 
653 |a Fluid flow 
653 |a Aircraft performance 
653 |a Direct numerical simulation 
653 |a Reynolds number 
653 |a Self-similarity 
653 |a Two dimensional bodies 
653 |a Flow theory 
653 |a Unmanned aerial vehicles 
653 |a Navier-Stokes equations 
653 |a Theories 
653 |a Flat plates 
653 |a Aerodynamics 
653 |a Two dimensional flow 
653 |a Green's functions 
653 |a Fluid dynamics 
653 |a Micro air vehicles (MAV) 
653 |a Vehicles 
653 |a Viscous fluids 
653 |a Low speed 
653 |a Environmental 
700 1 |a Hou, Wei  |u Department of Mechanical and Civil Engineering, California Institute of Technology, Pasadena, CA   91125, USA 
700 1 |a Hinton, Edward M  |u School of Mathematics and Statistics, The University of Melbourne, Vic   3010, Australia 
700 1 |a Pullin, DI  |u Graduate Aerospace Laboratories, California Institute of Technology, Pasadena, CA   91125, USA 
700 1 |a Colonius, Tim  |u Department of Mechanical and Civil Engineering, California Institute of Technology, Pasadena, CA   91125, USA 
773 0 |t Journal of Fluid Mechanics  |g vol. 992 (Aug 2024) 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3097669948/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3097669948/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch