Outlier Detection in Streaming Data for Telecommunications and Industrial Applications: A Survey

Guardado en:
Bibliografiske detaljer
Udgivet i:Electronics vol. 13, no. 16 (2024), p. 3339
Hovedforfatter: Mfondoum, Roland N
Andre forfattere: Ivanov, Antoni, Koleva, Pavlina, Poulkov, Vladimir, Manolova, Agata
Udgivet:
MDPI AG
Fag:
Online adgang:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3097929353
003 UK-CbPIL
022 |a 2079-9292 
024 7 |a 10.3390/electronics13163339  |2 doi 
035 |a 3097929353 
045 2 |b d20240101  |b d20241231 
084 |a 231458  |2 nlm 
100 1 |a Mfondoum, Roland N 
245 1 |a Outlier Detection in Streaming Data for Telecommunications and Industrial Applications: A Survey 
260 |b MDPI AG  |c 2024 
513 |a Journal Article 
520 3 |a Streaming data are present all around us. From traditional radio systems streaming audio to today’s connected end-user devices constantly sending information or accessing services, data are flowing constantly between nodes across various networks. The demand for appropriate outlier detection (OD) methods in the fields of fault detection, special events detection, and malicious activities detection and prevention is not only persistent over time but increasing, especially with the recent developments in Telecommunication systems such as Fifth Generation (5G) networks facilitating the expansion of the Internet of Things (IoT). The process of selecting a computationally efficient OD method, adapted for a specific field and accounting for the existence of empirical data, or lack thereof, is non-trivial. This paper presents a thorough survey of OD methods, categorized by the applications they are implemented in, the basic assumptions that they use according to the characteristics of the streaming data, and a summary of the emerging challenges, such as the evolving structure and nature of the data and their dimensionality and temporality. A categorization of commonly used datasets in the context of streaming data is produced to aid data source identification for researchers in this field. Based on this, guidelines for OD method selection are defined, which consider flexibility and sample size requirements and facilitate the design of such algorithms in Telecommunications and other industries. 
653 |a Outliers (statistics) 
653 |a Data analysis 
653 |a User behavior 
653 |a Internet of Things 
653 |a Sensors 
653 |a Data processing 
653 |a Industrial applications 
653 |a Algorithms 
653 |a Telecommunications 
653 |a Literature reviews 
653 |a Audio data 
653 |a Fault detection 
653 |a Resource management 
653 |a Business metrics 
700 1 |a Ivanov, Antoni 
700 1 |a Koleva, Pavlina 
700 1 |a Poulkov, Vladimir 
700 1 |a Manolova, Agata 
773 0 |t Electronics  |g vol. 13, no. 16 (2024), p. 3339 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3097929353/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3097929353/fulltextwithgraphics/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3097929353/fulltextPDF/embedded/ZKJTFFSVAI7CB62C?source=fedsrch