Integral-Valued Pythagorean Fuzzy-Set-Based Dyna Q+ Framework for Task Scheduling in Cloud Computing

Αποθηκεύτηκε σε:
Λεπτομέρειες βιβλιογραφικής εγγραφής
Εκδόθηκε σε:Sensors vol. 24, no. 16 (2024), p. 5272
Κύριος συγγραφέας: Krishnamurthy, Bhargavi
Άλλοι συγγραφείς: Shiva, Sajjan G
Έκδοση:
MDPI AG
Θέματα:
Διαθέσιμο Online:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Ετικέτες: Προσθήκη ετικέτας
Δεν υπάρχουν, Καταχωρήστε ετικέτα πρώτοι!

MARC

LEADER 00000nab a2200000uu 4500
001 3098221397
003 UK-CbPIL
022 |a 1424-8220 
024 7 |a 10.3390/s24165272  |2 doi 
035 |a 3098221397 
045 2 |b d20240101  |b d20241231 
084 |a 231630  |2 nlm 
100 1 |a Krishnamurthy, Bhargavi  |u Department of Computer Science and Engineering, Siddaganga Institute of Technology, Tumakuru 572103, Karnataka, India 
245 1 |a Integral-Valued Pythagorean Fuzzy-Set-Based Dyna Q+ Framework for Task Scheduling in Cloud Computing 
260 |b MDPI AG  |c 2024 
513 |a Journal Article 
520 3 |a Task scheduling is a critical challenge in cloud computing systems, greatly impacting their performance. Task scheduling is a nondeterministic polynomial time hard (NP-Hard) problem that complicates the search for nearly optimal solutions. Five major uncertainty parameters, i.e., security, traffic, workload, availability, and price, influence task scheduling decisions. The primary rationale for selecting these uncertainty parameters lies in the challenge of accurately measuring their values, as empirical estimations often diverge from the actual values. The integral-valued Pythagorean fuzzy set (IVPFS) is a promising mathematical framework to deal with parametric uncertainties. The Dyna Q+ algorithm is the updated form of the Dyna Q agent designed specifically for dynamic computing environments by providing bonus rewards to non-exploited states. In this paper, the Dyna Q+ agent is enriched with the IVPFS mathematical framework to make intelligent task scheduling decisions. The performance of the proposed IVPFS Dyna Q+ task scheduler is tested using the CloudSim 3.3 simulator. The execution time is reduced by 90%, the makespan time is also reduced by 90%, the operation cost is below 50%, and the resource utilization rate is improved by 95%, all of these parameters meeting the desired standards or expectations. The results are also further validated using an expected value analysis methodology that confirms the good performance of the task scheduler. A better balance between exploration and exploitation through rigorous action-based learning is achieved by the Dyna Q+ agent. 
653 |a Scheduling 
653 |a Computer centers 
653 |a Machine learning 
653 |a Datasets 
653 |a Deep learning 
653 |a Fuzzy sets 
653 |a Mathematical models 
653 |a Value analysis 
653 |a Production planning 
653 |a Algorithms 
653 |a Cloud computing 
653 |a Workloads 
653 |a Expected values 
653 |a Energy consumption 
653 |a Resource management 
653 |a Business metrics 
700 1 |a Shiva, Sajjan G  |u Department of Computer Science, University of Memphis, Memphis, TN 38152-3240, USA 
773 0 |t Sensors  |g vol. 24, no. 16 (2024), p. 5272 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3098221397/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3098221397/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3098221397/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch