DetectBERT: Towards Full App-Level Representation Learning to Detect Android Malware

Na minha lista:
Detalhes bibliográficos
Publicado no:arXiv.org (Aug 29, 2024), p. n/a
Autor principal: Sun, Tiezhu
Outros Autores: Daoudi, Nadia, Kim, Kisub, Allix, Kevin, Bissyandé, Tegawendé F, Klein, Jacques
Publicado em:
Cornell University Library, arXiv.org
Assuntos:
Acesso em linha:Citation/Abstract
Full text outside of ProQuest
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!

MARC

LEADER 00000nab a2200000uu 4500
001 3098950902
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3098950902 
045 0 |b d20240829 
100 1 |a Sun, Tiezhu 
245 1 |a DetectBERT: Towards Full App-Level Representation Learning to Detect Android Malware 
260 |b Cornell University Library, arXiv.org  |c Aug 29, 2024 
513 |a Working Paper 
520 3 |a Recent advancements in ML and DL have significantly improved Android malware detection, yet many methodologies still rely on basic static analysis, bytecode, or function call graphs that often fail to capture complex malicious behaviors. DexBERT, a pre-trained BERT-like model tailored for Android representation learning, enriches class-level representations by analyzing Smali code extracted from APKs. However, its functionality is constrained by its inability to process multiple Smali classes simultaneously. This paper introduces DetectBERT, which integrates correlated Multiple Instance Learning (c-MIL) with DexBERT to handle the high dimensionality and variability of Android malware, enabling effective app-level detection. By treating class-level features as instances within MIL bags, DetectBERT aggregates these into a comprehensive app-level representation. Our evaluation demonstrates that DetectBERT not only surpasses existing state-of-the-art detection methods but also adapts to evolving malware threats. Moreover, the versatility of the DetectBERT framework holds promising potential for broader applications in app-level analysis and other software engineering tasks, offering new avenues for research and development. 
653 |a Threat evaluation 
653 |a Malware 
653 |a Software engineering 
653 |a Research & development--R&D 
653 |a Learning 
653 |a Applications programs 
653 |a Graphical representations 
653 |a State-of-the-art reviews 
653 |a Computer programming 
700 1 |a Daoudi, Nadia 
700 1 |a Kim, Kisub 
700 1 |a Allix, Kevin 
700 1 |a Bissyandé, Tegawendé F 
700 1 |a Klein, Jacques 
773 0 |t arXiv.org  |g (Aug 29, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3098950902/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2408.16353