PolarBEVDet: Exploring Polar Representation for Multi-View 3D Object Detection in Bird's-Eye-View

Gorde:
Xehetasun bibliografikoak
Argitaratua izan da:arXiv.org (Dec 4, 2024), p. n/a
Egile nagusia: Yu, Zichen
Beste egile batzuk: Liu, Quanli, Wang, Wei, Zhang, Liyong, Zhao, Xiaoguang
Argitaratua:
Cornell University Library, arXiv.org
Gaiak:
Sarrera elektronikoa:Citation/Abstract
Full text outside of ProQuest
Etiketak: Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!

MARC

LEADER 00000nab a2200000uu 4500
001 3098951384
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3098951384 
045 0 |b d20241204 
100 1 |a Yu, Zichen 
245 1 |a PolarBEVDet: Exploring Polar Representation for Multi-View 3D Object Detection in Bird's-Eye-View 
260 |b Cornell University Library, arXiv.org  |c Dec 4, 2024 
513 |a Working Paper 
520 3 |a Recently, LSS-based multi-view 3D object detection provides an economical and deployment-friendly solution for autonomous driving. However, all the existing LSS-based methods transform multi-view image features into a Cartesian Bird's-Eye-View(BEV) representation, which does not take into account the non-uniform image information distribution and hardly exploits the view symmetry. In this paper, in order to adapt the image information distribution and preserve the view symmetry by regular convolution, we propose to employ the polar BEV representation to substitute the Cartesian BEV representation. To achieve this, we elaborately tailor three modules: a polar view transformer to generate the polar BEV representation, a polar temporal fusion module for fusing historical polar BEV features and a polar detection head to predict the polar-parameterized representation of the object. In addition, we design a 2D auxiliary detection head and a spatial attention enhancement module to improve the quality of feature extraction in perspective view and BEV, respectively. Finally, we integrate the above improvements into a novel multi-view 3D object detector, PolarBEVDet. Experiments on nuScenes show that PolarBEVDet achieves the superior performance. The code is available at https://github.com/Yzichen/PolarBEVDet.git.(This work has been submitted to the IEEE for possible publication. Copyright may be transferred without notice, after which this version may no longer be accessible) 
653 |a Feature extraction 
653 |a Modules 
653 |a Image enhancement 
653 |a Object recognition 
653 |a Symmetry 
653 |a Representations 
653 |a Cartesian coordinates 
700 1 |a Liu, Quanli 
700 1 |a Wang, Wei 
700 1 |a Zhang, Liyong 
700 1 |a Zhao, Xiaoguang 
773 0 |t arXiv.org  |g (Dec 4, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3098951384/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2408.16200