Financial fraud detection through the application of machine learning techniques: a literature review

Guardado en:
Bibliografiske detaljer
Udgivet i:Humanities & Social Sciences Communications vol. 11, no. 1 (Dec 2024), p. 1130
Hovedforfatter: Hernandez Aros, Ludivia
Andre forfattere: Bustamante Molano, Luisa Ximena, Gutierrez-Portela, Fernando, Moreno Hernandez, John Johver, Rodríguez Barrero, Mario Samuel
Udgivet:
Springer Nature B.V.
Fag:
Online adgang:Citation/Abstract
Full Text
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3100376995
003 UK-CbPIL
022 |a 2662-9992 
022 |a 2055-1045 
024 7 |a 10.1057/s41599-024-03606-0  |2 doi 
035 |a 3100376995 
045 2 |b d20241201  |b d20241231 
100 1 |a Hernandez Aros, Ludivia  |u Universidad Cooperativa de Colombia, School of Public Accounting, Ibagué, Colombia (GRID:grid.442158.e) (ISNI:0000 0001 2300 1573) 
245 1 |a Financial fraud detection through the application of machine learning techniques: a literature review 
260 |b Springer Nature B.V.  |c Dec 2024 
513 |a Journal Article 
520 3 |a Financial fraud negatively impacts organizational administrative processes, particularly affecting owners and/or investors seeking to maximize their profits. Addressing this issue, this study presents a literature review on financial fraud detection through machine learning techniques. The PRISMA and Kitchenham methods were applied, and 104 articles published between 2012 and 2023 were examined. These articles were selected based on predefined inclusion and exclusion criteria and were obtained from databases such as Scopus, IEEE Xplore, Taylor & Francis, SAGE, and ScienceDirect. These selected articles, along with the contributions of authors, sources, countries, trends, and datasets used in the experiments, were used to detect financial fraud and its existing types. Machine learning models and metrics were used to assess performance. The analysis indicated a trend toward using real datasets. Notably, credit card fraud detection models are the most widely used for detecting credit card loan fraud. The information obtained by different authors was acquired from the stock exchanges of China, Canada, the United States, Taiwan, and Tehran, among other countries. Furthermore, the usage of synthetic data has been low (less than 7% of the employed datasets). Among the leading contributors to the studies, China, India, Saudi Arabia, and Canada remain prominent, whereas Latin American countries have few related publications. 
610 4 |a PricewaterhouseCoopers LLP 
651 4 |a Latin America 
653 |a Machine learning 
653 |a Research methodology 
653 |a Accuracy 
653 |a Datasets 
653 |a Bibliometrics 
653 |a Trends 
653 |a Data mining 
653 |a Experiments 
653 |a Bank fraud 
653 |a Fraud prevention 
653 |a Financial statements 
653 |a Literature reviews 
653 |a Systematic review 
653 |a Databases 
653 |a Profits 
653 |a Fraud 
653 |a Owners 
653 |a Stock exchanges 
653 |a Investors 
653 |a Literary criticism 
653 |a Credit 
653 |a Credit cards 
700 1 |a Bustamante Molano, Luisa Ximena  |u Universidad Cooperativa de Colombia, School of Systems Engineering, Ibagué, Colombia (GRID:grid.442158.e) (ISNI:0000 0001 2300 1573) 
700 1 |a Gutierrez-Portela, Fernando  |u Universidad Cooperativa de Colombia, School of Systems Engineering, Ibagué, Colombia (GRID:grid.442158.e) (ISNI:0000 0001 2300 1573) 
700 1 |a Moreno Hernandez, John Johver  |u Universidad Cooperativa de Colombia, School of Public Accounting, Ibagué, Colombia (GRID:grid.442158.e) (ISNI:0000 0001 2300 1573) 
700 1 |a Rodríguez Barrero, Mario Samuel  |u Universidad Cooperativa de Colombia, School of Business Administration, Ibagué, Colombia (GRID:grid.442158.e) (ISNI:0000 0001 2300 1573) 
773 0 |t Humanities & Social Sciences Communications  |g vol. 11, no. 1 (Dec 2024), p. 1130 
786 0 |d ProQuest  |t Social Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3100376995/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3100376995/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3100376995/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch