Lossy Compression of Z-Map Based Shape Models Using Daubechies Wavelet Transform and Quickselect

שמור ב:
מידע ביבליוגרפי
הוצא לאור ב:International Journal of Automation Technology vol. 18, no. 5 (Sep 2024), p. 613
מחבר ראשי: Umezu Nobuyuki
מחברים אחרים: Inui Masatomo
יצא לאור:
Fuji Technology Press Co. Ltd.
נושאים:
גישה מקוונת:Citation/Abstract
Full Text - PDF
תגים: הוספת תג
אין תגיות, היה/י הראשונ/ה לתייג את הרשומה!

MARC

LEADER 00000nab a2200000uu 4500
001 3100508902
003 UK-CbPIL
022 |a 1881-7629 
022 |a 1883-8022 
024 7 |a 10.20965/ijat.2024.p0613  |2 doi 
035 |a 3100508902 
045 2 |b d20240901  |b d20240930 
100 1 |a Umezu Nobuyuki  |u Ibaraki University 4-12-1 Nakanarusawa, Hitachi, Ibaraki 316-8511, Japan nobuyuki.umezu.cs@vc.ibaraki.ac.jp 
245 1 |a Lossy Compression of Z-Map Based Shape Models Using Daubechies Wavelet Transform and Quickselect 
260 |b Fuji Technology Press Co. Ltd.  |c Sep 2024 
513 |a Journal Article 
520 3 |a We propose an algorithm for lossy compression of computer-aided design models in Z-map representation. Our method employs Daubechies wavelet functions, which are smoother than those of the Haar wavelet used in a previous work for the lossy compression of shape models. A significant reduction in the amount of data of the compressed shape model was achieved using the proposed lossy in which the least significant coefficients of the wavelet synopsis were deleted. The nonlinear filtering of coefficients was based on the quickselect algorithm, which was seven to ten times faster than a normal quicksort algorithm and allowed us to accelerate the entire process. We conducted a series of experiments using shape models with 512 × 512–8192 × 8192 resolutions to evaluate our technique using various wavelet functions. The proposed method performed the process in 50–90 ms for the models at 1024 × 1024 resolution and reduced the output binary size by 75%–90% compared with those compressed using a previous method. Some Daubechies wavelets, such as D4 and D6, were found superior in lossy compression using nonlinear filtering based on the order of magnitude of wavelet coefficients. 
653 |a Algorithms 
653 |a Computer aided design--CAD 
653 |a Wavelet transforms 
653 |a Computer aided mapping 
653 |a Data compression 
653 |a Filtration 
700 1 |a Inui Masatomo  |u Ibaraki University 4-12-1 Nakanarusawa, Hitachi, Ibaraki 316-8511, Japan nobuyuki.umezu.cs@vc.ibaraki.ac.jp 
773 0 |t International Journal of Automation Technology  |g vol. 18, no. 5 (Sep 2024), p. 613 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3100508902/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3100508902/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch