Rate-Adaptive Generative Semantic Communication Using Conditional Diffusion Models

Spremljeno u:
Bibliografski detalji
Izdano u:arXiv.org (Dec 23, 2024), p. n/a
Glavni autor: Yang, Pujing
Daljnji autori: Zhang, Guangyi, Cai, Yunlong
Izdano:
Cornell University Library, arXiv.org
Teme:
Online pristup:Citation/Abstract
Full text outside of ProQuest
Oznake: Dodaj oznaku
Bez oznaka, Budi prvi tko označuje ovaj zapis!

MARC

LEADER 00000nab a2200000uu 4500
001 3100998076
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3100998076 
045 0 |b d20241223 
100 1 |a Yang, Pujing 
245 1 |a Rate-Adaptive Generative Semantic Communication Using Conditional Diffusion Models 
260 |b Cornell University Library, arXiv.org  |c Dec 23, 2024 
513 |a Working Paper 
520 3 |a Recent advances in deep learning-based joint source-channel coding (DJSCC) have shown promise for end-to-end semantic image transmission. However, most existing schemes primarily focus on optimizing pixel-wise metrics, which often fail to align with human perception, leading to lower perceptual quality. In this letter, we propose a novel generative DJSCC approach using conditional diffusion models to enhance the perceptual quality of transmitted images. Specifically, by utilizing entropy models, we effectively manage transmission bandwidth based on the estimated entropy of transmitted sym-bols. These symbols are then used at the receiver as conditional information to guide a conditional diffusion decoder in image reconstruction. Our model is built upon the emerging advanced mamba-like linear attention (MLLA) skeleton, which excels in image processing tasks while also offering fast inference speed. Besides, we introduce a multi-stage training strategy to ensure the stability and improve the overall performance of the model. Simulation results demonstrate that our proposed method significantly outperforms existing approaches in terms of perceptual quality. 
653 |a Image transmission 
653 |a Diffusion rate 
653 |a Semantics 
653 |a Entropy 
653 |a Image quality 
653 |a Image reconstruction 
653 |a Image enhancement 
653 |a Information management 
653 |a Image processing 
700 1 |a Zhang, Guangyi 
700 1 |a Cai, Yunlong 
773 0 |t arXiv.org  |g (Dec 23, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3100998076/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2409.02597