Multi-modality radiomics of conventional T1 weighted and diffusion tensor imaging for differentiating Parkinson’s disease motor subtypes in early-stages

Guardado en:
Detalles Bibliográficos
Publicado en:Scientific Reports (Nature Publisher Group) vol. 14, no. 1 (2024), p. 20708
Autor principal: Panahi, Mehdi
Otros Autores: Hosseini, Mahboube Sadat
Publicado:
Nature Publishing Group
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3101008231
003 UK-CbPIL
022 |a 2045-2322 
024 7 |a 10.1038/s41598-024-71860-y  |2 doi 
035 |a 3101008231 
045 2 |b d20240101  |b d20241231 
084 |a 274855  |2 nlm 
100 1 |a Panahi, Mehdi  |u Payame Noor University Erbil Branch, Department of Computer Engineering, Erbil, Iraq 
245 1 |a Multi-modality radiomics of conventional T1 weighted and diffusion tensor imaging for differentiating Parkinson’s disease motor subtypes in early-stages 
260 |b Nature Publishing Group  |c 2024 
513 |a Journal Article 
520 3 |a This study aimed to develop and validate a multi-modality radiomics approach using T1-weighted and diffusion tensor imaging (DTI) to differentiate Parkinson's disease (PD) motor subtypes, specifically tremor-dominant (TD) and postural instability gait difficulty (PIGD), in early disease stages. We analyzed T1-weighted and DTI scans from 140 early-stage PD patients (70 TD, 70 PIGD) and 70 healthy controls from the Parkinson's Progression Markers Initiative database. Radiomics features were extracted from 16 brain regions of interest. After harmonization and feature selection, four machine learning classifiers were trained and evaluated for both three-class (HC vs TD vs PIGD) and binary (TD vs PIGD) classification tasks. The light gradient boosting machine (LGBM) classifier demonstrated the best overall performance. For the three-class classification, LGBM achieved an accuracy of 85% and an area under the receiver operating characteristic curve (AUC) of 0.94 using combined T1 and DTI features. In the binary classification task, LGBM reached an accuracy of 95% and AUC of 0.95. Key discriminative features were identified in the Thalamus, Amygdala, Hippocampus, and Substantia Nigra for the three-group classification, and in the Pallidum, Amygdala, Hippocampus, and Accumbens for binary classification. The combined T1 + DTI approach consistently outperformed single-modality classifications, with DTI alone showing particularly low performance (AUC 0.55–0.62) in binary classification. The high accuracy and AUC values suggest that this approach could significantly improve early diagnosis and subtyping of PD. These findings have important implications for clinical management, potentially enabling more personalized treatment strategies based on early, accurate subtype identification. 
653 |a Radiomics 
653 |a Hippocampus 
653 |a Amygdala 
653 |a Accuracy 
653 |a Parkinson's disease 
653 |a Magnetic resonance imaging 
653 |a Movement disorders 
653 |a Classification 
653 |a Tremor 
653 |a Globus pallidus 
653 |a Substantia nigra 
653 |a Neurodegenerative diseases 
653 |a Neuroimaging 
653 |a Machine learning 
653 |a Social 
700 1 |a Hosseini, Mahboube Sadat  |u Shahid Beheshti University, Department of Medical Radiation Engineering, Tehran, Iran (GRID:grid.412502.0) (ISNI:0000 0001 0686 4748) 
773 0 |t Scientific Reports (Nature Publisher Group)  |g vol. 14, no. 1 (2024), p. 20708 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3101008231/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3101008231/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch