Online Scheduling via Gradient Descent for Weighted Flow Time Minimization

Guardat en:
Dades bibliogràfiques
Publicat a:arXiv.org (Sep 4, 2024), p. n/a
Autor principal: Chen, Qingyun
Altres autors: Im, Sungjin, Petety, Aditya
Publicat:
Cornell University Library, arXiv.org
Matèries:
Accés en línia:Citation/Abstract
Full text outside of ProQuest
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3101377307
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3101377307 
045 0 |b d20240904 
100 1 |a Chen, Qingyun 
245 1 |a Online Scheduling via Gradient Descent for Weighted Flow Time Minimization 
260 |b Cornell University Library, arXiv.org  |c Sep 4, 2024 
513 |a Working Paper 
520 3 |a In this paper, we explore how a natural generalization of Shortest Remaining Processing Time (SRPT) can be a powerful \emph{meta-algorithm} for online scheduling. The meta-algorithm processes jobs to maximally reduce the objective of the corresponding offline scheduling problem of the remaining jobs: minimizing the total weighted completion time of them (the residual optimum). We show that it achieves scalability for minimizing total weighted flow time when the residual optimum exhibits \emph{supermodularity}. Scalability here means it is \(O(1)\)-competitive with an arbitrarily small speed augmentation advantage over the adversary, representing the best possible outcome achievable for various scheduling problems. Thanks to this finding, our approach does not require the residual optimum to have a closed mathematical form. Consequently, we can obtain the schedule by solving a linear program, which makes our approach readily applicable to a rich body of applications. Furthermore, by establishing a novel connection to \emph{substitute valuations in Walrasian markets}, we show how to achieve supermodularity, thereby obtaining scalable algorithms for various scheduling problems, such as matroid scheduling, generalized network flow, and generalized arbitrary speed-up curves, etc., and this is the \emph{first} non-trivial or scalable algorithm for many of them. 
653 |a Scheduling 
653 |a Algorithms 
653 |a Computer aided scheduling 
653 |a Completion time 
653 |a Optimization 
700 1 |a Im, Sungjin 
700 1 |a Petety, Aditya 
773 0 |t arXiv.org  |g (Sep 4, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3101377307/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2409.03020