OSS License Identification at Scale: A Comprehensive Dataset Using World of Code

Saved in:
Bibliographic Details
Published in:arXiv.org (Dec 6, 2024), p. n/a
Main Author: Jahanshahi, Mahmoud
Other Authors: Reid, David, McDaniel, Adam, Mockus, Audris
Published:
Cornell University Library, arXiv.org
Subjects:
Online Access:Citation/Abstract
Full text outside of ProQuest
Tags: Add Tag
No Tags, Be the first to tag this record!

MARC

LEADER 00000nab a2200000uu 4500
001 3102578362
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3102578362 
045 0 |b d20241206 
100 1 |a Jahanshahi, Mahmoud 
245 1 |a OSS License Identification at Scale: A Comprehensive Dataset Using World of Code 
260 |b Cornell University Library, arXiv.org  |c Dec 6, 2024 
513 |a Working Paper 
520 3 |a The proliferation of open source software (OSS) and different types of reuse has made it incredibly difficult to perform an essential legal and compliance task of accurate license identification within the software supply chain. This study presents a reusable and comprehensive dataset of OSS licenses, created using the World of Code (WoC) infrastructure. By scanning all files containing "license" in their file paths, and applying the approximate matching via winnowing algorithm to identify the most similar license from the SPDX list, we found and identified 5.5 million distinct license blobs in OSS projects. The dataset includes a detailed project-to-license (P2L) map with commit timestamps, enabling dynamic analysis of license adoption and changes over time. To verify the accuracy of the dataset we use stratified sampling and manual review, achieving a final accuracy of 92.08%, with precision of 87.14%, recall of 95.45%, and an F1 score of 91.11%. This dataset is intended to support a range of research and practical tasks, including the detection of license noncompliance, the investigations of license changes, study of licensing trends, and the development of compliance tools. The dataset is open, providing a valuable resource for developers, researchers, and legal professionals in the OSS community. 
653 |a Algorithms 
653 |a Licensing 
653 |a Source code 
653 |a Datasets 
653 |a Licenses 
653 |a Licensing (technology) 
653 |a Open source software 
700 1 |a Reid, David 
700 1 |a McDaniel, Adam 
700 1 |a Mockus, Audris 
773 0 |t arXiv.org  |g (Dec 6, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3102578362/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2409.04824