\(\mu\lambda\epsilon\delta\)-Calculus: A Self Optimizing Language that Seems to Exhibit Paradoxical Transfinite Cognitive Capabilities

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org (Sep 9, 2024), p. n/a
1. Verfasser: Salgado, Ronie
Veröffentlicht:
Cornell University Library, arXiv.org
Schlagworte:
Online-Zugang:Citation/Abstract
Full text outside of ProQuest
Tags: Tag hinzufügen
Keine Tags, Fügen Sie das erste Tag hinzu!

MARC

LEADER 00000nab a2200000uu 4500
001 3102580169
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3102580169 
045 0 |b d20240909 
100 1 |a Salgado, Ronie 
245 1 |a \(\mu\lambda\epsilon\delta\)-Calculus: A Self Optimizing Language that Seems to Exhibit Paradoxical Transfinite Cognitive Capabilities 
260 |b Cornell University Library, arXiv.org  |c Sep 9, 2024 
513 |a Working Paper 
520 3 |a Formal mathematics and computer science proofs are formalized using Hilbert-Russell-style logical systems which are designed to not admit paradoxes and self-refencing reasoning. These logical systems are natural way to describe and reason syntactic about tree-like data structures. We found that Wittgenstein-style logic is an alternate system whose propositional elements are directed graphs (points and arrows) capable of performing paraconsistent self-referencing reasoning without exploding. Imperative programming language are typically compiled and optimized with SSA-based graphs whose most general representation is the Sea of Node. By restricting the Sea of Nodes to only the data dependencies nodes, we attempted to stablish syntactic-semantic correspondences with the Lambda-calculus optimization. Surprisingly, when we tested our optimizer of the lambda calculus we performed a natural extension onto the \(\mu\lambda\) which is always terminating. This always terminating algorithm is an actual paradox whose resulting graphs are geometrical fractals, which seem to be isomorphic to original source program. These fractal structures looks like a perfect compressor of a program, which seem to resemble an actual physical black-hole with a naked singularity. In addition to these surprising results, we propose two additional extensions to the calculus to model the cognitive process of self-aware beings: 1) \(\epsilon\)-expressions to model syntactic to semantic expansion as a general model of macros; 2) \(\delta\)-functional expressions as a minimal model of input and output. We provide detailed step-by-step construction of our language interpreter, compiler and optimizer. 
653 |a Calculus 
653 |a Semantics 
653 |a Graphs 
653 |a Imperative programming 
653 |a Graph theory 
653 |a Data structures 
653 |a Programming languages 
653 |a Reasoning 
653 |a Nodes 
653 |a Paradoxes 
653 |a Algorithms 
653 |a Source programs 
653 |a Fractals 
653 |a Graphical representations 
653 |a Cognition & reasoning 
773 0 |t arXiv.org  |g (Sep 9, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3102580169/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2409.05351