Quantum Geometric Machine Learning

Պահպանված է:
Մատենագիտական մանրամասներ
Հրատարակված է:arXiv.org (Sep 8, 2024), p. n/a
Հիմնական հեղինակ: Perrier, Elija
Հրապարակվել է:
Cornell University Library, arXiv.org
Խորագրեր:
Առցանց հասանելիություն:Citation/Abstract
Full text outside of ProQuest
Ցուցիչներ: Ավելացրեք ցուցիչ
Չկան պիտակներ, Եղեք առաջինը, ով նշում է այս գրառումը!

MARC

LEADER 00000nab a2200000uu 4500
001 3102584425
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3102584425 
045 0 |b d20240908 
100 1 |a Perrier, Elija 
245 1 |a Quantum Geometric Machine Learning 
260 |b Cornell University Library, arXiv.org  |c Sep 8, 2024 
513 |a Working Paper 
520 3 |a The use of geometric and symmetry techniques in quantum and classical information processing has a long tradition across the physical sciences as a means of theoretical discovery and applied problem solving. In the modern era, the emergent combination of such geometric and symmetry-based methods with quantum machine learning (QML) has provided a rich opportunity to contribute to solving a number of persistent challenges in fields such as QML parametrisation, quantum control, quantum unitary synthesis and quantum proof generation. In this thesis, we combine state-of-the-art machine learning methods with techniques from differential geometry and topology to address these challenges. We present a large-scale simulated dataset of open quantum systems to facilitate the development of quantum machine learning as a field. We demonstrate the use of deep learning greybox machine learning techniques for estimating approximate time-optimal unitary sequences as geodesics on subRiemannian symmetric space manifolds. Finally, we present novel techniques utilising Cartan decompositions and variational methods for analytically solving quantum control problems for certain classes of Riemannian symmetric space. Owing to its multidisciplinary nature, this work contains extensive supplementary background information in the form of Appendices. Each supplementary Appendix is tailored to provide additional background material in a relatively contained way for readers whom may be familiar with some, but not all, of these diverse scientific disciplines. The Appendices reproduce or paraphrase standard results in the literature with source material identified at the beginning of each Appendix. Proofs are omitted for brevity but can be found in the cited sources and other standard texts. 
653 |a Machine learning 
653 |a Geodesy 
653 |a Parameterization 
653 |a Data processing 
653 |a Deep learning 
653 |a Differential geometry 
653 |a Symmetry 
653 |a Time optimal control 
653 |a Physical sciences 
653 |a Variational methods 
653 |a Topology 
773 0 |t arXiv.org  |g (Sep 8, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3102584425/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2409.04955