Coding is hard

में बचाया:
ग्रंथसूची विवरण
में प्रकाशित:arXiv.org (Sep 6, 2024), p. n/a
मुख्य लेखक: Sanders, Sam
प्रकाशित:
Cornell University Library, arXiv.org
विषय:
ऑनलाइन पहुंच:Citation/Abstract
Full text outside of ProQuest
टैग: टैग जोड़ें
कोई टैग नहीं, इस रिकॉर्ड को टैग करने वाले पहले व्यक्ति बनें!

MARC

LEADER 00000nab a2200000uu 4500
001 3102584699
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3102584699 
045 0 |b d20240906 
100 1 |a Sanders, Sam 
245 1 |a Coding is hard 
260 |b Cornell University Library, arXiv.org  |c Sep 6, 2024 
513 |a Working Paper 
520 3 |a A central topic in mathematical logic is the classification of theorems from mathematics in hierarchies according to their logical strength. Ideally, the place of a theorem in a hierarchy does not depend on the representation (aka coding) used. In this paper, we show that the standard representation of compact metric spaces in second-order arithmetic has a profound effect. To this end, we study basic theorems for such spaces like a continuous function has a supremum and a countable set has measure zero. We show that these and similar third-order statements imply at least Feferman's highly non-constructive projection principle, and even full second-order arithmetic or countable choice in some cases. When formulated with representations (aka codes), the associated second-order theorems are provable in rather weak fragments of second-order arithmetic. Thus, we arrive at the slogan that coding compact metric spaces in the language of second-order arithmetic can be as hard as second-order arithmetic or countable choice. We believe every mathematician should be aware of this slogan, as central foundational topics in mathematics make use of the standard second-order representation of compact metric spaces. In the process of collecting evidence for the above slogan, we establish a number of equivalences involving Feferman's projection principle and countable choice. We also study generalisations to fourth-order arithmetic and beyond with similar-but-stronger results. 
653 |a Mathematical logic 
653 |a Arithmetic coding 
653 |a Theorems 
653 |a Metric space 
653 |a Arithmetic 
653 |a Hierarchies 
653 |a Representations 
773 0 |t arXiv.org  |g (Sep 6, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3102584699/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2409.04562