Enhancing Temporal Understanding in Audio Question Answering for Large Audio Language Models
I tiakina i:
| I whakaputaina i: | arXiv.org (Dec 13, 2024), p. n/a |
|---|---|
| Kaituhi matua: | |
| Ētahi atu kaituhi: | , |
| I whakaputaina: |
Cornell University Library, arXiv.org
|
| Ngā marau: | |
| Urunga tuihono: | Citation/Abstract Full text outside of ProQuest |
| Ngā Tūtohu: |
Kāore He Tūtohu, Me noho koe te mea tuatahi ki te tūtohu i tēnei pūkete!
|
| Whakarāpopotonga: | The Audio Question Answering (AQA) task includes audio event classification, audio captioning, and open-ended reasoning. Recently, AQA has garnered attention due to the advent of Large Audio Language Models (LALMs). Current literature focuses on constructing LALMs by integrating audio encoders with text-only Large Language Models (LLMs) through a projection module. While LALMs excel in general audio understanding, they are limited in temporal reasoning, which may hinder their commercial applications and on-device deployment. This paper addresses these challenges and limitations in audio temporal reasoning. First, we introduce a data augmentation technique for generating reliable audio temporal questions and answers using an LLM. Second, we perform a further fine-tuning of an existing baseline using curriculum learning strategy to specialize in temporal reasoning without compromising performance on fine-tuned tasks. We demonstrate the performance of our model using state-of-the-art LALMs on public audio benchmark datasets. Third, we implement our AQA model on-device locally and investigate its CPU inference for edge applications. |
|---|---|
| ISSN: | 2331-8422 |
| Puna: | Engineering Database |