Development and Comparison of InSAR-Based Land Subsidence Prediction Models

Furkejuvvon:
Bibliográfalaš dieđut
Publikašuvnnas:Remote Sensing vol. 16, no. 17 (2024), p. 3345
Váldodahkki: Zheng, Lianjing
Eará dahkkit: Wang, Qing, Cao, Chen, Shan, Bo, Jin, Tie, Zhu, Kuanxing, Li, Zongzheng
Almmustuhtton:
MDPI AG
Fáttát:
Liŋkkat:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Fáddágilkorat: Lasit fáddágilkoriid
Eai fáddágilkorat, Lasit vuosttaš fáddágilkora!

MARC

LEADER 00000nab a2200000uu 4500
001 3104053502
003 UK-CbPIL
022 |a 2072-4292 
024 7 |a 10.3390/rs16173345  |2 doi 
035 |a 3104053502 
045 2 |b d20240101  |b d20241231 
084 |a 231556  |2 nlm 
100 1 |a Zheng, Lianjing  |u College of Construction Engineering, Jilin University, Changchun 130022, China; <email>zhenglj20@mails.jlu.edu.cn</email> (L.Z.); <email>wangqing@jlu.edu.cn</email> (Q.W.); <email>jintie23@mails.jlu.edu.cn</email> (T.J.); <email>zhukx21@mails.jlu.edu.cn</email> (K.Z.); <email>zongzheng21@mails.jlu.edu.cn</email> (Z.L.) 
245 1 |a Development and Comparison of InSAR-Based Land Subsidence Prediction Models 
260 |b MDPI AG  |c 2024 
513 |a Journal Article 
520 3 |a Land subsidence caused by human engineering activities is a serious problem worldwide. We selected Qian’an County as the study area to explore the evolution of land subsidence and predict its deformation trend. This study utilized synthetic aperture radar interferometry (InSAR) technology to process 64 Sentinel-1 data covering the area, and high-precision and high-resolution surface deformation data from January 2017 to December 2021 were obtained to analyze the deformation characteristics and evolution of land subsidence. Then, land subsidence was predicted using the intelligence neural network theory, machine learning methods, time-series prediction models, dynamic data processing techniques, and engineering geology of ground subsidence. This study developed three time-series prediction models: a support vector regression (SVR), a Holt Exponential Smoothing (Holt) model, and multi-layer perceptron (MLP) models. A time-series prediction analysis was conducted using the surface deformation data of the subsidence funnel area of Zhouzi Village, Qian’an County. In addition, the advantages and disadvantages of the three models were compared and analyzed. The results show that the three developed time-series data prediction models can effectively capture the time-series-related characteristics of surface deformation in the study area. The SVR and Holt models are suitable for analyzing fewer external interference factors and shorter periods, while the MLP model has high accuracy and universality, making it suitable for predicting both short-term and long-term surface deformation. Ultimately, our results are valuable for further research on land subsidence prediction. 
653 |a Geology 
653 |a Accuracy 
653 |a Data processing 
653 |a Mathematical models 
653 |a Multilayers 
653 |a Deformation 
653 |a Regression analysis 
653 |a Multilayer perceptrons 
653 |a Mathematical functions 
653 |a Deformation effects 
653 |a Deformation analysis 
653 |a Subsidence 
653 |a Machine learning 
653 |a Engineering geology 
653 |a Heat conductivity 
653 |a Prediction models 
653 |a Aquifers 
653 |a Interferometric synthetic aperture radar 
653 |a Data analysis 
653 |a Land subsidence 
653 |a Precipitation 
653 |a Drought 
653 |a Neural networks 
653 |a Artificial intelligence 
653 |a Support vector machines 
653 |a Groundwater 
653 |a Interferometry 
653 |a Time series 
653 |a Algorithms 
653 |a Human engineering 
653 |a Predictions 
700 1 |a Wang, Qing  |u College of Construction Engineering, Jilin University, Changchun 130022, China; <email>zhenglj20@mails.jlu.edu.cn</email> (L.Z.); <email>wangqing@jlu.edu.cn</email> (Q.W.); <email>jintie23@mails.jlu.edu.cn</email> (T.J.); <email>zhukx21@mails.jlu.edu.cn</email> (K.Z.); <email>zongzheng21@mails.jlu.edu.cn</email> (Z.L.) 
700 1 |a Cao, Chen  |u College of Construction Engineering, Jilin University, Changchun 130022, China; <email>zhenglj20@mails.jlu.edu.cn</email> (L.Z.); <email>wangqing@jlu.edu.cn</email> (Q.W.); <email>jintie23@mails.jlu.edu.cn</email> (T.J.); <email>zhukx21@mails.jlu.edu.cn</email> (K.Z.); <email>zongzheng21@mails.jlu.edu.cn</email> (Z.L.) 
700 1 |a Shan, Bo  |u China Power Engineering Consulting Group, Northeast Electric Power Design Institute Co., Ltd., Changchun 130021, China; <email>shanbo@nepdi.net</email> 
700 1 |a Jin, Tie  |u College of Construction Engineering, Jilin University, Changchun 130022, China; <email>zhenglj20@mails.jlu.edu.cn</email> (L.Z.); <email>wangqing@jlu.edu.cn</email> (Q.W.); <email>jintie23@mails.jlu.edu.cn</email> (T.J.); <email>zhukx21@mails.jlu.edu.cn</email> (K.Z.); <email>zongzheng21@mails.jlu.edu.cn</email> (Z.L.) 
700 1 |a Zhu, Kuanxing  |u College of Construction Engineering, Jilin University, Changchun 130022, China; <email>zhenglj20@mails.jlu.edu.cn</email> (L.Z.); <email>wangqing@jlu.edu.cn</email> (Q.W.); <email>jintie23@mails.jlu.edu.cn</email> (T.J.); <email>zhukx21@mails.jlu.edu.cn</email> (K.Z.); <email>zongzheng21@mails.jlu.edu.cn</email> (Z.L.) 
700 1 |a Li, Zongzheng  |u College of Construction Engineering, Jilin University, Changchun 130022, China; <email>zhenglj20@mails.jlu.edu.cn</email> (L.Z.); <email>wangqing@jlu.edu.cn</email> (Q.W.); <email>jintie23@mails.jlu.edu.cn</email> (T.J.); <email>zhukx21@mails.jlu.edu.cn</email> (K.Z.); <email>zongzheng21@mails.jlu.edu.cn</email> (Z.L.) 
773 0 |t Remote Sensing  |g vol. 16, no. 17 (2024), p. 3345 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3104053502/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3104053502/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3104053502/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch