Entanglement and Coherence Dynamics in Photonic Quantum Memristors

Сохранить в:
Библиографические подробности
Опубликовано в::arXiv.org (Dec 24, 2024), p. n/a
Главный автор: Ferrara, Alberto
Другие авторы: Rosario Lo Franco
Опубликовано:
Cornell University Library, arXiv.org
Предметы:
Online-ссылка:Citation/Abstract
Full text outside of ProQuest
Метки: Добавить метку
Нет меток, Требуется 1-ая метка записи!
Описание
Краткий обзор:Memristive systems exhibit dynamics that depend on their past states, making them useful as memory units. Recently, quantum memristor models have been proposed and notably, a photonic quantum memristor (PQM) has been experimentally proven. In this work, we explore and characterize various quantum properties that emerge from this specific model of PQM. Firstly, we find that a single PQM displays memristive dynamics on its quantum coherence. Secondly, we analytically show that a network made of two independent PQMs can manifest memory effects on the dynamics of both entanglement and coherence of correlated photons traveling through the network, regardless of their distance, in the hypothesis of negligible external disturbances. Additionally, we build and run a circuit-model of the PQM on a real qubit-based quantum computer (IBM-Q), showing that: (i) this system can effectively be used for non-linear quantum computing under specific conditions, and (ii) digital quantum simulations can reproduce the dynamics of a memristive quantum system in a non-Markovian regime.
ISSN:2331-8422
Источник:Engineering Database