Revolutionizing E-Commerce Logistics: AI-Driven Path Optimization for Sustainable Success

保存先:
書誌詳細
出版年:International Journal of Information Technologies and Systems Approach vol. 17, no. 1 (2024), p. 1
第一著者: Chen, Xia
その他の著者: Guo, Lina, Islam, Qamar
出版事項:
IGI Global
主題:
オンライン・アクセス:Citation/Abstract
Full Text - PDF
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!

MARC

LEADER 00000nab a2200000uu 4500
001 3105662230
003 UK-CbPIL
022 |a 1935-570X 
022 |a 1935-5718 
024 7 |a 10.4018/IJITSA.355016  |2 doi 
035 |a 3105662230 
045 2 |b d20240101  |b d20241231 
100 1 |a Chen, Xia  |u Henan Institute of Economics and Trade, China 
245 1 |a Revolutionizing E-Commerce Logistics: AI-Driven Path Optimization for Sustainable Success 
260 |b IGI Global  |c 2024 
513 |a Journal Article 
520 3 |a The traditional approach to logistics path planning is hindered by lengthy procedures. In this study, we explore the multi-objective optimization of logistics management, considering the conventional path and time efficiency indices alongside shelf safety and stability as additional objective functions. Based on particle swarm optimization (PSO), we optimize objective functions for internal path planning, scheduling timeliness, and shelf safety and stability. We then determine optimal routes under varying order demands using PSO and ultimately optimize the final path using dynamic programming and spline function restrictions to meet actual demand. Empirical results indicate that the proposed solution method outperforms other calculation methods, such as genetic algorithm (GA) and simulated annealing (SA), demonstrating over 10% improvement in time and total distance consumption. Further practical application tests demonstrate that the model in this study has a beneficial impact on all five distinct types of orders through efficient deployment optimization. 
653 |a Particle swarm optimization 
653 |a Integer programming 
653 |a Customer satisfaction 
653 |a Success 
653 |a Shelving 
653 |a Data analysis 
653 |a Inventory control 
653 |a Batch processing 
653 |a Multiple objective analysis 
653 |a Automation 
653 |a Efficiency 
653 |a Machine learning 
653 |a Big Data 
653 |a Dynamic programming 
653 |a Brand loyalty 
653 |a Genetic algorithms 
653 |a Artificial intelligence 
653 |a Sustainable development 
653 |a Route optimization 
653 |a Costs 
653 |a Decision making 
653 |a Spline functions 
653 |a Supply chains 
653 |a Stability 
653 |a Electronic commerce 
653 |a Simulated annealing 
653 |a Logistics 
653 |a Traveling salesman problem 
653 |a Optimization algorithms 
653 |a Inventory management 
653 |a Path planning 
653 |a Inventory 
653 |a Information management 
653 |a Logistics management 
653 |a Safety management 
700 1 |a Guo, Lina  |u Henan Institute of Economics and Trade, China 
700 1 |a Islam, Qamar  |u Dhofar University, Oman 
773 0 |t International Journal of Information Technologies and Systems Approach  |g vol. 17, no. 1 (2024), p. 1 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3105662230/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3105662230/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch