Generation of Compiler Backends From Formal Models of Hardware
Gorde:
| Argitaratua izan da: | ProQuest Dissertations and Theses (2024) |
|---|---|
| Egile nagusia: | |
| Argitaratua: |
ProQuest Dissertations & Theses
|
| Gaiak: | |
| Sarrera elektronikoa: | Citation/Abstract Full Text - PDF |
| Etiketak: |
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!
|
MARC
| LEADER | 00000nab a2200000uu 4500 | ||
|---|---|---|---|
| 001 | 3106218899 | ||
| 003 | UK-CbPIL | ||
| 020 | |a 9798384098058 | ||
| 035 | |a 3106218899 | ||
| 045 | 2 | |b d20240101 |b d20241231 | |
| 084 | |a 66569 |2 nlm | ||
| 100 | 1 | |a Smith, Gus Henry | |
| 245 | 1 | |a Generation of Compiler Backends From Formal Models of Hardware | |
| 260 | |b ProQuest Dissertations & Theses |c 2024 | ||
| 513 | |a Dissertation/Thesis | ||
| 520 | 3 | |a Compilers convert between representations—usually, from higher-level, human writable code to lower-level, machine-readable code. A compiler backend is the portion of the compiler containing optimizations and code generation routines for a specific hardware target. In this dissertation, I advocate for a specific way of building compiler backends: namely, by automatically generating them from explicit, formal models of hardware using automated reasoning algorithms. I describe how automatically generating compilers from formal models of hardware leads to increased optimization ability, stronger correctness guarantees, and reduced development time for compiler backends. As evidence, I present two case studies: first, Glenside, which uses equality saturation to increase the 3LA compiler’s ability to offload operations to machine learning accelerators, and second, Lakeroad, a technology mapper for FPGAs which uses program synthesis and semantics extracted from Verilog to map hardware designs to complex, programmable hardware primitives. | |
| 653 | |a Computer science | ||
| 653 | |a Computer engineering | ||
| 653 | |a Information technology | ||
| 773 | 0 | |t ProQuest Dissertations and Theses |g (2024) | |
| 786 | 0 | |d ProQuest |t ProQuest Dissertations & Theses Global | |
| 856 | 4 | 1 | |3 Citation/Abstract |u https://www.proquest.com/docview/3106218899/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text - PDF |u https://www.proquest.com/docview/3106218899/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch |