Reasoning Graph Enhanced Exemplars Retrieval for In-Context Learning

保存先:
書誌詳細
出版年:arXiv.org (Dec 12, 2024), p. n/a
第一著者: Lin, Yukang
その他の著者: Zhong, Bingchen, Jiang, Shuoran, Siebert, Joanna, Chen, Qingcai
出版事項:
Cornell University Library, arXiv.org
主題:
オンライン・アクセス:Citation/Abstract
Full text outside of ProQuest
タグ: タグ追加
タグなし, このレコードへの初めてのタグを付けませんか!

MARC

LEADER 00000nab a2200000uu 4500
001 3106537543
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3106537543 
045 0 |b d20241212 
100 1 |a Lin, Yukang 
245 1 |a Reasoning Graph Enhanced Exemplars Retrieval for In-Context Learning 
260 |b Cornell University Library, arXiv.org  |c Dec 12, 2024 
513 |a Working Paper 
520 3 |a Large language models (LLMs) have exhibited remarkable few-shot learning capabilities and unified the paradigm of NLP tasks through the in-context learning (ICL) technique. Despite the success of ICL, the quality of the exemplar demonstrations can significantly influence the LLM's performance. Existing exemplar selection methods mainly focus on the semantic similarity between queries and candidate exemplars. On the other hand, the logical connections between reasoning steps can be beneficial to depict the problem-solving process as well. In this paper, we proposes a novel method named Reasoning Graph-enhanced Exemplar Retrieval (RGER). RGER first quires LLM to generate an initial response, then expresses intermediate problem-solving steps to a graph structure. After that, it employs graph kernel to select exemplars with semantic and structural similarity. Extensive experiments demonstrate the structural relationship is helpful to the alignment of queries and candidate exemplars. The efficacy of RGER on math and logit reasoning tasks showcases its superiority over state-of-the-art retrieval-based approaches. Our code is released at https://github.com/Yukang-Lin/RGER. 
653 |a Problem solving 
653 |a Similarity 
653 |a Semantics 
653 |a Large language models 
653 |a Context 
653 |a Query processing 
653 |a Reasoning 
653 |a Retrieval 
700 1 |a Zhong, Bingchen 
700 1 |a Jiang, Shuoran 
700 1 |a Siebert, Joanna 
700 1 |a Chen, Qingcai 
773 0 |t arXiv.org  |g (Dec 12, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3106537543/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2409.11147