RTLRewriter: Methodologies for Large Models aided RTL Code Optimization

Sparad:
Bibliografiska uppgifter
I publikationen:arXiv.org (Sep 4, 2024), p. n/a
Huvudupphov: Yao, Xufeng
Övriga upphov: Wang, Yiwen, Li, Xing, Lian, Yingzhao, Chen, Ran, Chen, Lei, Yuan, Mingxuan, Xu, Hong, Yu, Bei
Utgiven:
Cornell University Library, arXiv.org
Ämnen:
Länkar:Citation/Abstract
Full text outside of ProQuest
Taggar: Lägg till en tagg
Inga taggar, Lägg till första taggen!

MARC

LEADER 00000nab a2200000uu 4500
001 3106853695
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3106853695 
045 0 |b d20240904 
100 1 |a Yao, Xufeng 
245 1 |a RTLRewriter: Methodologies for Large Models aided RTL Code Optimization 
260 |b Cornell University Library, arXiv.org  |c Sep 4, 2024 
513 |a Working Paper 
520 3 |a Register Transfer Level (RTL) code optimization is crucial for enhancing the efficiency and performance of digital circuits during early synthesis stages. Currently, optimization relies heavily on manual efforts by skilled engineers, often requiring multiple iterations based on synthesis feedback. In contrast, existing compiler-based methods fall short in addressing complex designs. This paper introduces RTLRewriter, an innovative framework that leverages large models to optimize RTL code. A circuit partition pipeline is utilized for fast synthesis and efficient rewriting. A multi-modal program analysis is proposed to incorporate vital visual diagram information as optimization cues. A specialized search engine is designed to identify useful optimization guides, algorithms, and code snippets that enhance the model ability to generate optimized RTL. Additionally, we introduce a Cost-aware Monte Carlo Tree Search (C-MCTS) algorithm for efficient rewriting, managing diverse retrieved contents and steering the rewriting results. Furthermore, a fast verification pipeline is proposed to reduce verification cost. To cater to the needs of both industry and academia, we propose two benchmarking suites: the Large Rewriter Benchmark, targeting complex scenarios with extensive circuit partitioning, optimization trade-offs, and verification challenges, and the Small Rewriter Benchmark, designed for a wider range of scenarios and patterns. Our comparative analysis with established compilers such as Yosys and E-graph demonstrates significant improvements, highlighting the benefits of integrating large models into the early stages of circuit design. We provide our benchmarks at https://github.com/yaoxufeng/RTLRewriter-Bench. 
653 |a Design 
653 |a Digital electronics 
653 |a Search algorithms 
653 |a Program verification (computers) 
653 |a Compilers 
653 |a Cost analysis 
653 |a Circuit design 
653 |a Search engines 
653 |a Synthesis 
653 |a Optimization 
653 |a Benchmarks 
653 |a Steering 
700 1 |a Wang, Yiwen 
700 1 |a Li, Xing 
700 1 |a Lian, Yingzhao 
700 1 |a Chen, Ran 
700 1 |a Chen, Lei 
700 1 |a Yuan, Mingxuan 
700 1 |a Xu, Hong 
700 1 |a Yu, Bei 
773 0 |t arXiv.org  |g (Sep 4, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3106853695/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2409.11414