Meta ensemble learning in geospatial sentiment analysis and community survey mapping: a water supply case study

Guardado en:
Detalles Bibliográficos
Publicado en:Earth Science Informatics vol. 17, no. 4 (Aug 2024), p. 3233
Autor principal: Vahidnia, Mohammad H.
Publicado:
Springer Nature B.V.
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3106868878
003 UK-CbPIL
022 |a 1865-0473 
022 |a 1865-0481 
024 7 |a 10.1007/s12145-024-01345-z  |2 doi 
035 |a 3106868878 
045 2 |b d20240801  |b d20240831 
084 |a 109043  |2 nlm 
100 1 |a Vahidnia, Mohammad H.  |u Shahid Beheshti University, Center for Remote Sensing and GIS Research, Faculty of Earth Sciences, Tehran, Iran (GRID:grid.412502.0) (ISNI:0000 0001 0686 4748) 
245 1 |a Meta ensemble learning in geospatial sentiment analysis and community survey mapping: a water supply case study 
260 |b Springer Nature B.V.  |c Aug 2024 
513 |a Journal Article 
520 3 |a Amidst the proliferation of social media and online platforms, sentiment analysis stands out as a pivotal tool in Natural Language Processing (NLP), facilitating the categorization of public opinions. The overarching goal of this study is to apply sentiment analysis techniques to assess public perceptions of water supply quality and provide decision-support maps for infrastructure planning. The primary research gap addressed in this study concerns the efficacious integration of spatial statistics methods with sentiment analysis for the purpose of generating zoning maps. This integration, offers a novel approach for understanding public perceptions and sentiments within specific geographical contexts. Sub-objectives of the study include aspects such as the development of a robust meta ensemble learning framework, the utilization of crowdsourced geographic information for sentiment analysis, and the evaluation of text mining techniques specific to water supply concerns. Our approach utilizes comments from subscribers of the Water Organization portal. The meta ensemble learning framework comprises six different combinations, including boosting, bagging, and voting solutions, drawing from various base estimators such as K-Nearest Neighbors (KNN), Decision Tree (DT), Support Vector Machine (SVM), Random Forest (RF), and Artificial Neural Network (ANN), alongside boosting techniques like AdaBoost and XGBoost. Results indicate that aggregating vectors from text feature extraction techniques such as Bag of Words (BoW), N-gram, and TF-IDF yielded optimal pattern recognition. AdaBoost emerged as the most effective model, as determined by metrics like Accuracy, F1-score, and AUC. Unreviewed subscriber comments were fed into the final model to predict unfavorable remarks, subsequently visualized on georeferenced maps. Geostatistical methods within Geographic Information Systems (GIS) were employed, including spatial kernel density, spatial join, natural breaks classification, and hotspot analysis using Getis-Ord Gi* statistics. The approach produced maps illustrating areas with a high density of negative remarks, identifying problematic urban blocks and continuous hotspot areas. Overall, our method demonstrates promising efficiency in assessing water supply situations and informing development planning. 
653 |a Water supply 
653 |a Geographic information systems 
653 |a Artificial neural networks 
653 |a Neural networks 
653 |a Water quality 
653 |a Data mining 
653 |a Maps 
653 |a Machine learning 
653 |a Density 
653 |a Pattern recognition 
653 |a Decision trees 
653 |a Decision support systems 
653 |a Perceptions 
653 |a Sentiment analysis 
653 |a Support vector machines 
653 |a Statistical methods 
653 |a Natural language processing 
653 |a Kernel functions 
653 |a Ensemble learning 
653 |a Remote sensing 
653 |a Economic 
773 0 |t Earth Science Informatics  |g vol. 17, no. 4 (Aug 2024), p. 3233 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3106868878/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3106868878/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch