A novel load distribution strategy for aggregators using IoT-enabled mobile devices

Guardat en:
Dades bibliogràfiques
Publicat a:arXiv.org (Dec 9, 2024), p. n/a
Autor principal: Shivaraman, Nitin
Altres autors: Fittler, Jakob, Ramanathan, Saravanan, Easwaran, Arvind, Steinhorst, Sebastian
Publicat:
Cornell University Library, arXiv.org
Matèries:
Accés en línia:Citation/Abstract
Full text outside of ProQuest
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3108869985
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3108869985 
045 0 |b d20241209 
100 1 |a Shivaraman, Nitin 
245 1 |a A novel load distribution strategy for aggregators using IoT-enabled mobile devices 
260 |b Cornell University Library, arXiv.org  |c Dec 9, 2024 
513 |a Working Paper 
520 3 |a The rapid proliferation of Internet-of-things (IoT) as well as mobile devices such as Electric Vehicles (EVs), has led to unpredictable load at the grid. The demand to supply ratio is particularly exacerbated at a few grid aggregators (charging stations) with excessive demand due to the geographic location, peak time, etc. Existing solutions on demand response cannot achieve significant improvements based only on time-shifting the loads without considering the device properties such as charging modes and movement capabilities to enable geographic migration. Additionally, the information on the spare capacity at a few aggregators can aid in re-channeling the load from other aggregators facing excess demand to allow migration of devices. In this paper, we model these flexible properties of the devices as a mixed-integer non-linear problem (MINLP) to minimize excess load and the improve the utility (benefit) across all devices. We propose an online distributed low-complexity heuristic that prioritizes devices based on demand and deadlines to minimize the cumulative loss in utility. The proposed heuristic is tested on an exhaustive set of synthetic data and compared with solutions from a solver/optimization tool for the same runtime to show the impracticality of using a solver. A real-world EV testbed data is also tested with our proposed solution and other scheduling solutions to show the practicality of generating a feasible schedule and a loss improvement of at least 57.23%. 
653 |a Heuristic 
653 |a Solvers 
653 |a Scheduling 
653 |a Electric power demand 
653 |a Internet of Things 
653 |a Mixed integer 
653 |a Electronic devices 
653 |a Electric vehicle charging 
653 |a Geographical locations 
653 |a Load distribution (forces) 
653 |a Synthetic data 
700 1 |a Fittler, Jakob 
700 1 |a Ramanathan, Saravanan 
700 1 |a Easwaran, Arvind 
700 1 |a Steinhorst, Sebastian 
773 0 |t arXiv.org  |g (Dec 9, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3108869985/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2409.14293