Ultrafast vision perception by neuromorphic optical flow

Kaydedildi:
Detaylı Bibliyografya
Yayımlandı:arXiv.org (Sep 10, 2024), p. n/a
Yazar: Wang, Shengbo
Diğer Yazarlar: Gao, Shuo, Pu, Tongming, Zhao, Liangbing, Arokia Nathan
Baskı/Yayın Bilgisi:
Cornell University Library, arXiv.org
Konular:
Online Erişim:Citation/Abstract
Full text outside of ProQuest
Etiketler: Etiketle
Etiket eklenmemiş, İlk siz ekleyin!

MARC

LEADER 00000nab a2200000uu 4500
001 3109526242
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3109526242 
045 0 |b d20240910 
100 1 |a Wang, Shengbo 
245 1 |a Ultrafast vision perception by neuromorphic optical flow 
260 |b Cornell University Library, arXiv.org  |c Sep 10, 2024 
513 |a Working Paper 
520 3 |a Optical flow is crucial for robotic visual perception, yet current methods primarily operate in a 2D format, capturing movement velocities only in horizontal and vertical dimensions. This limitation results in incomplete motion cues, such as missing regions of interest or detailed motion analysis of different regions, leading to delays in processing high-volume visual data in real-world settings. Here, we report a 3D neuromorphic optical flow method that leverages the time-domain processing capability of memristors to embed external motion features directly into hardware, thereby completing motion cues and dramatically accelerating the computation of movement velocities and subsequent task-specific algorithms. In our demonstration, this approach reduces visual data processing time by an average of 0.3 seconds while maintaining or improving the accuracy of motion prediction, object tracking, and object segmentation. Interframe visual processing is achieved for the first time in UAV scenarios. Furthermore, the neuromorphic optical flow algorithm's flexibility allows seamless integration with existing algorithms, ensuring broad applicability. These advancements open unprecedented avenues for robotic perception, without the trade-off between accuracy and efficiency. 
653 |a Time domain analysis 
653 |a Visual tasks 
653 |a Three dimensional flow 
653 |a Two dimensional flow 
653 |a Optical data processing 
653 |a Data processing 
653 |a Algorithms 
653 |a Visual perception 
653 |a Optical flow (image analysis) 
653 |a Three dimensional motion 
653 |a Visual perception driven algorithms 
653 |a Two dimensional analysis 
700 1 |a Gao, Shuo 
700 1 |a Pu, Tongming 
700 1 |a Zhao, Liangbing 
700 1 |a Arokia Nathan 
773 0 |t arXiv.org  |g (Sep 10, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3109526242/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2409.15345