Type-directed operational semantics for gradual typing

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of Functional Programming vol. 34 (Sep 2024)
Hlavní autor: YE, WENJIA
Další autoři: BRUNO C D S OLIVEIRA
Vydáno:
Cambridge University Press
Témata:
On-line přístup:Citation/Abstract
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 3109569512
003 UK-CbPIL
022 |a 0956-7968 
022 |a 1469-7653 
024 7 |a 10.1017/S0956796824000078  |2 doi 
035 |a 3109569512 
045 2 |b d20240901  |b d20240930 
084 |a 79046  |2 nlm 
100 1 |a YE, WENJIA  |u The University of Hong Kong, Hong Kong, China, (e-mail: wjye@cs.hku.hk ) 
245 1 |a Type-directed operational semantics for gradual typing 
260 |b Cambridge University Press  |c Sep 2024 
513 |a Journal Article 
520 3 |a The semantics of gradually typed languages is typically given indirectly via an elaboration into a cast calculus. This contrasts with more conventional formulations of programming language semantics, where the semantics of a language is given directly using, for instance, an operational semantics. This paper presents a new approach to give the semantics of gradually typed languages directly. We use a recently proposed variant of small-step operational semantics called type-directed operational semantics (TDOS). In a TDOS, type annotations become operationally relevant and can affect the result of a program. In the context of a gradually typed language, type annotations are used to trigger type-based conversions on values. We illustrate how to employ a TDOS on gradually typed languages using two calculi. The first calculus, called <inline-formula><inline-graphic mime-subtype="png" xlink:href="S0956796824000078_inline1.png" />\(\lambda B^{g}\)</inline-formula>, is inspired by the semantics of the blame calculus, but it has implicit type conversions, enabling it to be used as a gradually typed language. The second calculus, called <inline-formula><inline-graphic mime-subtype="png" xlink:href="S0956796824000078_inline2.png" />\(\lambda e\)</inline-formula>, explores an eager semantics for gradually typed languages using a TDOS. For both calculi, type safety is proved. For the <inline-formula><inline-graphic mime-subtype="png" xlink:href="S0956796824000078_inline3.png" />\(\lambda B^{g}\)</inline-formula> calculus, we also present a variant with blame labels and illustrate how the TDOS can also deal with such an important feature of gradually typed languages. We also show that the semantics of <inline-formula><inline-graphic mime-subtype="png" xlink:href="S0956796824000078_inline4.png" />\(\lambda B^{g}\)</inline-formula> with blame labels is sound and complete with respect to the semantics of the blame calculus, and that both calculi come with a gradual guarantee. All the results have been formalized in the Coq theorem prover. 
653 |a Language 
653 |a Calculus 
653 |a Semantics 
653 |a Labels 
653 |a Annotations 
653 |a Theorem proving 
653 |a Programming languages 
700 1 |a BRUNO C D S OLIVEIRA  |u The University of Hong Kong, Hong Kong, China, (e-mail: bruno@cs.hku.hk ) 
773 0 |t Journal of Functional Programming  |g vol. 34 (Sep 2024) 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3109569512/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3109569512/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch