Harnessing NLP and Large Language Models for Pattern Discovery and Information Extraction in Electric Health Reports

Gardado en:
Detalles Bibliográficos
Publicado en:ProQuest Dissertations and Theses (2024)
Autor Principal: Esmail Zadeh Nojoo Kambar, Mina
Publicado:
ProQuest Dissertations & Theses
Materias:
Acceso en liña:Citation/Abstract
Full Text - PDF
Etiquetas: Engadir etiqueta
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!

MARC

LEADER 00000nab a2200000uu 4500
001 3109723414
003 UK-CbPIL
020 |a 9798384437598 
035 |a 3109723414 
045 2 |b d20240101  |b d20241231 
084 |a 66569  |2 nlm 
100 1 |a Esmail Zadeh Nojoo Kambar, Mina 
245 1 |a Harnessing NLP and Large Language Models for Pattern Discovery and Information Extraction in Electric Health Reports 
260 |b ProQuest Dissertations & Theses  |c 2024 
513 |a Dissertation/Thesis 
520 3 |a In this work, we report on a series of natural language processing tools and models to improve the efficiency and accuracy of information discovery from clinical trials and pharmacological studies. Our main contributions are: 1. The development of an open-source platform Tri-AL that• Enables dynamic tracking of clinical trials information over time,• Excels in data visualization and user interaction with a particular emphasis on enhancing the analysis and representation of race and ethnicity data to foster equity in clinical research, and• Includes a predictive model utilizing machine learning to decipher drug mechanisms of action.2. Heterogeneous Graph Neural Network for Gene-Chemical Entity Relation Extraction: We created a supervised deep learning model that adapts a heterogeneous Graph Neural Network to extract gene-chemical components. This model augments word representations using message passing that accurately identifies gene-chemical named entities and their relationships class.3. Bipartite Graph Model for Evaluating Summarization Performance: We proposed a bipartite graph model to evaluate the performance of large language models in summarizing clinical trials. This model provides a robust framework to assess the accuracy and effectiveness of automated summarization tools in the medical domain. 
653 |a Engineering 
653 |a Biomedical engineering 
653 |a Bioinformatics 
653 |a Computer science 
773 0 |t ProQuest Dissertations and Theses  |g (2024) 
786 0 |d ProQuest  |t ProQuest Dissertations & Theses Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3109723414/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3109723414/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch