Prolate Spheroidal Wave Functions and the Accuracy and Dimensionality of Spectral Analysis

Сохранить в:
Библиографические подробности
Опубликовано в::arXiv.org (Dec 11, 2024), p. n/a
Главный автор: Stroschein, Timothy
Опубликовано:
Cornell University Library, arXiv.org
Предметы:
Online-ссылка:Citation/Abstract
Full text outside of ProQuest
Метки: Добавить метку
Нет меток, Требуется 1-ая метка записи!

MARC

LEADER 00000nab a2200000uu 4500
001 3110114809
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3110114809 
045 0 |b d20241211 
100 1 |a Stroschein, Timothy 
245 1 |a Prolate Spheroidal Wave Functions and the Accuracy and Dimensionality of Spectral Analysis 
260 |b Cornell University Library, arXiv.org  |c Dec 11, 2024 
513 |a Working Paper 
520 3 |a The main result of this thesis is an efficient protocol to determine the frequencies of a signal \(C(t)= \sum_k |a_k|^2 e^{i \omega_k t}\), which is given for a finite time, to a high degree of precision. Specifically, we develop a theorem that provides a fundamental precision guarantee. Additionally, we establish an approximation theory for spectral analysis through low-dimensional subspaces that can be applied to a wide range of problems. The signal processing routine relies on a symmetry between harmonic analysis and quantum mechanics. In this context, prolate spheroidal wave functions (PSWF) are identified as the optimal information processing basis. To establish rigorous precision guarantees, we extend the concentration properties of PSWFs to a supremum bound and an \(\ell_2\) bound on their derivatives. The new bounds allow us to refine the truncation estimates for the prolate sampling formula. We also provide a new geometrical insight into the commutation relation between an integral operator and a differential operator, both of which have PSWFs as eigenfunctions. 
653 |a Data processing 
653 |a Signal processing 
653 |a Harmonic functions 
653 |a Operators (mathematics) 
653 |a Quantum mechanics 
653 |a Spectrum analysis 
653 |a Differential equations 
653 |a Subspaces 
653 |a Dimensional analysis 
653 |a Prolate spheroids 
653 |a Fourier analysis 
653 |a Harmonic analysis 
653 |a Commutation 
653 |a Wave functions 
653 |a Eigenvectors 
773 0 |t arXiv.org  |g (Dec 11, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3110114809/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2409.16584