Enhanced Particle Classification in Water Cherenkov Detectors Using Machine Learning: Modeling and Validation with Monte Carlo Simulation Datasets

সংরক্ষণ করুন:
গ্রন্থ-পঞ্জীর বিবরন
প্রকাশিত:Atmosphere vol. 15, no. 9 (2024), p. 1039
প্রধান লেখক: Ticiano Jorge Torres Peralta
অন্যান্য লেখক: Molina, Maria Graciela, Asorey, Hernan, Sidelnik, Ivan, Antonio Juan Rubio-Montero, Dasso, Sergio, Mayo-Garcia, Rafael, Taboada, Alvaro, Otiniano, Luis, Pulinets, Sergey
প্রকাশিত:
MDPI AG
বিষয়গুলি:
অনলাইন ব্যবহার করুন:Citation/Abstract
Full Text + Graphics
Full Text - PDF
ট্যাগগুলো: ট্যাগ যুক্ত করুন
কোনো ট্যাগ নেই, প্রথমজন হিসাবে ট্যাগ করুন!

MARC

LEADER 00000nab a2200000uu 4500
001 3110395805
003 UK-CbPIL
022 |a 2073-4433 
024 7 |a 10.3390/atmos15091039  |2 doi 
035 |a 3110395805 
045 2 |b d20240101  |b d20241231 
084 |a 231428  |2 nlm 
100 1 |a Ticiano Jorge Torres Peralta  |u Tucumán Space Weather Center (TSWC), Facultad de Ciencias Exactas y Tecnología (FACET-UNT), San Miguel de Tucumán T4000, Argentina; <email>ttorres@herrera.unt.edu.ar</email>; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1425, Argentina 
245 1 |a Enhanced Particle Classification in Water Cherenkov Detectors Using Machine Learning: Modeling and Validation with Monte Carlo Simulation Datasets 
260 |b MDPI AG  |c 2024 
513 |a Journal Article 
520 3 |a The Latin American Giant Observatory (LAGO) is a ground-based extended cosmic rays observatory designed to study transient astrophysical events, the role of the atmosphere on the formation of secondary particles, and space-weather-related phenomena. With the use of a network of Water Cherenkov Detectors (WCDs), LAGO measures the secondary particle flux, a consequence of the interaction of astroparticles impinging on the atmosphere of Earth. This flux can be grouped into three distinct basic constituents: electromagnetic, muonic, and hadronic components. When a particle enters a WCD, it generates a measurable signal characterized by unique features correlating to the particle’s type and the detector’s specific response. The resulting charge histograms from these signals provide valuable insights into the flux of primary astroparticles and their key characteristics. However, these data are insufficient to effectively distinguish between the contributions of different secondary particles. In this work, we extend our previous research by using detailed simulations of the expected atmospheric response to the primary flux and the corresponding response of our WCDs to atmospheric radiation. This dataset, which was created through the combination of the outputs of the ARTI and Meiga simulation frameworks, simulated the expected WCD signals produced by the flux of secondary particles during one day at the LAGO site in Bariloche, Argentina, situated at 865 m above sea level. This was achieved by analyzing the real-time magnetospheric and local atmospheric conditions for February and March of 2012, where the resultant atmospheric secondary-particle flux was integrated into a specific Meiga application featuring a comprehensive Geant4 model of the WCD at this LAGO location. The final output was modified for effective integration into our machine-learning pipeline. With an implementation of Ordering Points to Identify the Clustering Structure (OPTICS), a density-based clustering algorithm used to identify patterns in data collected by a single WCD, we have further refined our approach to implement a method that categorizes particle groups using advanced unsupervised machine learning techniques. This allowed for the differentiation among particle types and utilized the detector’s nuanced response to each, thus pinpointing the principal contributors within each group. Our analysis has demonstrated that applying our enhanced methodology can accurately identify the originating particles with a high degree of confidence on a single-pulse basis, highlighting its precision and reliability. These promising results suggest the feasibility of future implementations of machine-leaning-based models throughout LAGO’s distributed detection network and other astroparticle observatories for semi-automated, onboard and real-time data analysis. 
653 |a Cerenkov counters 
653 |a Datasets 
653 |a Observational learning 
653 |a Atmospheric radiation 
653 |a Unsupervised learning 
653 |a Atmosphere 
653 |a Downward long wave radiation 
653 |a Machine learning 
653 |a Particle settling 
653 |a Radiation 
653 |a Computer simulation 
653 |a Data analysis 
653 |a Detectors 
653 |a Clustering 
653 |a Earth atmosphere 
653 |a Algorithms 
653 |a Observatories 
653 |a Real time 
653 |a Cosmic radiation 
653 |a Solar cycle 
653 |a Monte Carlo simulation 
653 |a Atmospheric conditions 
653 |a Sea level 
653 |a Energy 
653 |a Cosmic rays 
653 |a Fluctuations 
653 |a Learning algorithms 
653 |a Optics 
653 |a Charged particles 
653 |a Cosmic ray showers 
653 |a Magnetospheres 
653 |a Sensors 
653 |a Neural networks 
700 1 |a Molina, Maria Graciela  |u Tucumán Space Weather Center (TSWC), Facultad de Ciencias Exactas y Tecnología (FACET-UNT), San Miguel de Tucumán T4000, Argentina; <email>ttorres@herrera.unt.edu.ar</email>; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1425, Argentina; Instituto Nazionale di Geofisica e Vulcanologia (INGV), 00143 Roma, Italy 
700 1 |a Asorey, Hernan  |u Medical Physics Department, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica (CNEA), Bariloche R8402, Argentina 
700 1 |a Sidelnik, Ivan  |u Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1425, Argentina; Departamento de Física de Neutrones, Centro Atómico Bariloche, Comisión Nacional de Energía Atómica (CNEA), Bariloche R8402, Argentina 
700 1 |a Antonio Juan Rubio-Montero  |u Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain 
700 1 |a Dasso, Sergio  |u Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Buenos Aires C1425, Argentina; Laboratorio Argentino de Meteorología del esPacio (LAMP), Buenos Aires C1428, Argentina; Departamento de Ciencias de la Atmósfera y los Océanos (DCAO), Facultad de Ciencias Exactas y Naturales (FCEN, UBA), Buenos Aires C1428, Argentina; Instituto de Astronomía y Física del Espacio (IAFE), Buenos Aires C1428, Argentina 
700 1 |a Mayo-Garcia, Rafael  |u Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), 28040 Madrid, Spain 
700 1 |a Taboada, Alvaro  |u Instituto de Tecnologías en Detección y Astropartículas (ITeDA), Buenos Aires B1650, Argentina 
700 1 |a Otiniano, Luis  |u Comisión Nacional de Investigación y Desarrollo Aeroespacial (CONIDA), Lima 15046, Peru 
700 1 |a Pulinets, Sergey 
773 0 |t Atmosphere  |g vol. 15, no. 9 (2024), p. 1039 
786 0 |d ProQuest  |t Publicly Available Content Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3110395805/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3110395805/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3110395805/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch