A Light-Weight Self-Supervised Infrared Image Perception Enhancement Method

Guardat en:
Dades bibliogràfiques
Publicat a:Electronics vol. 13, no. 18 (2024), p. 3695
Autor principal: Xiao, Yifan
Altres autors: Zhang, Zhilong, Li, Zhouli
Publicat:
MDPI AG
Matèries:
Accés en línia:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3110458933
003 UK-CbPIL
022 |a 2079-9292 
024 7 |a 10.3390/electronics13183695  |2 doi 
035 |a 3110458933 
045 2 |b d20240101  |b d20241231 
084 |a 231458  |2 nlm 
100 1 |a Xiao, Yifan  |u National Laboratory of Automatic Target Recognition, National University of Defense Technology, Changsha 410073, China; <email>xiaoyifan.xyf@gmail.com</email>; College of Chemistry and Chemical Engineering, Xi’an Shiyou University, Xi’an 710065, China; <email>lizhouli@xsyu.edu.cn</email> 
245 1 |a A Light-Weight Self-Supervised Infrared Image Perception Enhancement Method 
260 |b MDPI AG  |c 2024 
513 |a Journal Article 
520 3 |a Convolutional Neural Networks (<inline-formula>CNNs</inline-formula>) have achieved remarkable results in the field of infrared image enhancement. However, the research on the visual perception mechanism and the objective evaluation indicators for enhanced infrared images is still not in-depth enough. To make the subjective and objective evaluation more consistent, this paper uses a perceptual metric to evaluate the enhancement effect of infrared images. The perceptual metric mimics the early conversion process of the human visual system and uses the normalized Laplacian pyramid distance (<inline-formula>NLPD</inline-formula>) between the enhanced image and the original scene radiance to evaluate the image enhancement effect. Based on this, this paper designs an infrared image-enhancement algorithm that is more conducive to human visual perception. The algorithm uses a lightweight Fully Convolutional Network (<inline-formula>FCN</inline-formula>), with <inline-formula>NLPD</inline-formula> as the similarity measure, and trains the network in a self-supervised manner by minimizing the <inline-formula>NLPD</inline-formula> between the enhanced image and the original scene radiance to achieve infrared image enhancement. The experimental results show that the infrared image enhancement method in this paper outperforms existing methods in terms of visual perception quality, and due to the use of a lightweight network, it is also the fastest enhancement method currently. 
653 |a Radiance 
653 |a Deep learning 
653 |a Wavelet transforms 
653 |a Visual perception 
653 |a Image enhancement 
653 |a Artificial neural networks 
653 |a Visual fields 
653 |a Design 
653 |a Infrared imagery 
653 |a Methods 
653 |a Algorithms 
653 |a Image quality 
653 |a Visual effects 
653 |a Radiation 
653 |a Visual perception driven algorithms 
700 1 |a Zhang, Zhilong  |u National Laboratory of Automatic Target Recognition, National University of Defense Technology, Changsha 410073, China; &lt;email&gt;xiaoyifan.xyf@gmail.com&lt;/email&gt; 
700 1 |a Li, Zhouli  |u College of Chemistry and Chemical Engineering, Xi’an Shiyou University, Xi’an 710065, China; &lt;email&gt;lizhouli@xsyu.edu.cn&lt;/email&gt; 
773 0 |t Electronics  |g vol. 13, no. 18 (2024), p. 3695 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3110458933/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3110458933/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3110458933/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch