Extending Multi-Output Methods for Long-Term Aboveground Biomass Time Series Forecasting Using Convolutional Neural Networks

Guardado en:
Detalles Bibliográficos
Publicado en:Machine Learning and Knowledge Extraction vol. 6, no. 3 (2024), p. 1633
Autor principal: Noa-Yarasca, Efrain
Otros Autores: Osorio Leyton, Javier M, Angerer, Jay P
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3110556099
003 UK-CbPIL
022 |a 2504-4990 
024 7 |a 10.3390/make6030079  |2 doi 
035 |a 3110556099 
045 2 |b d20240101  |b d20241231 
100 1 |a Noa-Yarasca, Efrain  |u Texas A&M AgriLife Research, Blackland Research and Extension Center, Temple, TX 76502, USA; <email>javier.osorio@ag.tamu.edu</email> 
245 1 |a Extending Multi-Output Methods for Long-Term Aboveground Biomass Time Series Forecasting Using Convolutional Neural Networks 
260 |b MDPI AG  |c 2024 
513 |a Journal Article 
520 3 |a Accurate aboveground vegetation biomass forecasting is essential for livestock management, climate impact assessments, and ecosystem health. While artificial intelligence (AI) techniques have advanced time series forecasting, a research gap in predicting aboveground biomass time series beyond single values persists. This study introduces RECMO and DirRecMO, two multi-output methods for forecasting aboveground vegetation biomass. Using convolutional neural networks, their efficacy is evaluated across short-, medium-, and long-term horizons on six Kenyan grassland biomass datasets, and compared with that of existing single-output methods (Recursive, Direct, and DirRec) and multi-output methods (MIMO and DIRMO). The results indicate that single-output methods are superior for short-term predictions, while both single-output and multi-output methods exhibit a comparable effectiveness in long-term forecasts. RECMO and DirRecMO outperform established multi-output methods, demonstrating a promising potential for biomass forecasting. This study underscores the significant impact of multi-output size on forecast accuracy, highlighting the need for optimal size adjustments and showcasing the proposed methods’ flexibility in long-term forecasts. Short-term predictions show less significant differences among methods, complicating the identification of the best performer. However, clear distinctions emerge in medium- and long-term forecasts, underscoring the greater importance of method choice for long-term predictions. Moreover, as the forecast horizon extends, errors escalate across all methods, reflecting the challenges of predicting distant future periods. This study suggests advancing hybrid models (e.g., RECMO and DirRecMO) to improve extended horizon forecasting. Future research should enhance adaptability, investigate multi-output impacts, and conduct comparative studies across diverse domains, datasets, and AI algorithms for robust insights. 
610 4 |a Agency for International Development 
651 4 |a Kenya 
651 4 |a East Africa 
653 |a Livestock 
653 |a Collaboration 
653 |a Forecasting 
653 |a Artificial neural networks 
653 |a Biodiversity 
653 |a Biomass 
653 |a Time series 
653 |a Climate change 
653 |a Comparative studies 
653 |a Vegetation 
653 |a Datasets 
653 |a Growth models 
653 |a Artificial intelligence 
653 |a Sustainable development 
653 |a Neural networks 
653 |a Grasslands 
653 |a Effectiveness 
653 |a Algorithms 
653 |a Methods 
653 |a Predictions 
700 1 |a Osorio Leyton, Javier M  |u Texas A&M AgriLife Research, Blackland Research and Extension Center, Temple, TX 76502, USA; <email>javier.osorio@ag.tamu.edu</email> 
700 1 |a Angerer, Jay P  |u USDA Agricultural Research Service—Livestock and Range Research Laboratory, Miles City, MT 59301, USA; <email>jay.angerer@usda.gov</email> 
773 0 |t Machine Learning and Knowledge Extraction  |g vol. 6, no. 3 (2024), p. 1633 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3110556099/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3110556099/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3110556099/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch