Wavelet-Based Computational Intelligence for Real-Time Anomaly Detection and Fault Isolation in Embedded Systems

Guardat en:
Dades bibliogràfiques
Publicat a:Machines vol. 12, no. 9 (2024), p. 664
Autor principal: Pacheco, Jesus
Altres autors: Benitez, Victor H, Pérez, Guillermo, Brau, Agustín
Publicat:
MDPI AG
Matèries:
Accés en línia:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3110573202
003 UK-CbPIL
022 |a 2075-1702 
024 7 |a 10.3390/machines12090664  |2 doi 
035 |a 3110573202 
045 2 |b d20240101  |b d20241231 
084 |a 231531  |2 nlm 
100 1 |a Pacheco, Jesus 
245 1 |a Wavelet-Based Computational Intelligence for Real-Time Anomaly Detection and Fault Isolation in Embedded Systems 
260 |b MDPI AG  |c 2024 
513 |a Journal Article 
520 3 |a In today’s technologically advanced landscape, sensors feed critical data for accurate decision-making and actions. Ensuring the integrity and reliability of sensor data is paramount to system performance and security. This paper introduces an innovative approach utilizing discrete wavelet transforms (DWT) embedded within microcontrollers to scrutinize sensor data meticulously. Our methodology aims to detect and isolate malfunctions, misuse, or any anomalies before they permeate the system, potentially causing widespread disruption. By leveraging the power of wavelet-based analysis, we embed computational intelligence directly into the microcontrollers, enabling them to monitor and validate their outputs in real-time. This proactive anomaly detection framework is designed to distinguish between normal and aberrant sensor behaviors, thereby safeguarding the system from erroneous data propagation. Our approach significantly enhances the reliability of embedded systems, providing a robust defense against false data injection attacks and contributing to overall cybersecurity. 
653 |a Microcontrollers 
653 |a Accuracy 
653 |a Deep learning 
653 |a System reliability 
653 |a Wavelet transforms 
653 |a Signal processing 
653 |a Discrete Wavelet Transform 
653 |a Unmanned aerial vehicles 
653 |a Wavelet analysis 
653 |a Internet of Things 
653 |a Bias 
653 |a Machine learning 
653 |a Data integrity 
653 |a Embedded systems 
653 |a Fourier transforms 
653 |a Neural networks 
653 |a Sensors 
653 |a Support vector machines 
653 |a Classification 
653 |a Intelligence 
653 |a Methods 
653 |a Anomalies 
653 |a Real time 
653 |a Cybersecurity 
653 |a Nuclear power plants 
700 1 |a Benitez, Victor H 
700 1 |a Pérez, Guillermo 
700 1 |a Brau, Agustín 
773 0 |t Machines  |g vol. 12, no. 9 (2024), p. 664 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3110573202/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3110573202/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3110573202/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch