Creating a diagnostic assessment model for autism spectrum disorder by differentiating lexicogrammatical choices through machine learning

Guardat en:
Dades bibliogràfiques
Publicat a:PLoS One vol. 19, no. 9 (Sep 2024), p. e0311209
Autor principal: Kato, Sumi
Altres autors: Hanawa, Kazuaki, Saito, Manabu, Nakamura, Kazuhiko
Publicat:
Public Library of Science
Matèries:
Accés en línia:Citation/Abstract
Full Text
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3110686789
003 UK-CbPIL
022 |a 1932-6203 
024 7 |a 10.1371/journal.pone.0311209  |2 doi 
035 |a 3110686789 
045 2 |b d20240901  |b d20240930 
084 |a 174835  |2 nlm 
100 1 |a Kato, Sumi 
245 1 |a Creating a diagnostic assessment model for autism spectrum disorder by differentiating lexicogrammatical choices through machine learning 
260 |b Public Library of Science  |c Sep 2024 
513 |a Journal Article 
520 3 |a This study explores the challenge of differentiating autism spectrum (AS) from non-AS conditions in adolescents and adults, particularly considering the heterogeneity of AS and the limitations ofssss diagnostic tools like the ADOS-2. In response, we advocate a multidimensional approach and highlight lexicogrammatical analysis as a key component to improve diagnostic accuracy. From a corpus of spoken language we developed, interviews and story-recounting texts were extracted for 64 individuals diagnosed with AS and 71 non-AS individuals, all aged 14 and above. Utilizing machine learning techniques, we analyzed the lexicogrammatical choices in both interviews and story-recounting tasks. Our approach led to the formulation of two diagnostic models: the first based on annotated linguistic tags, and the second combining these tags with textual analysis. The combined model demonstrated high diagnostic effectiveness, achieving an accuracy of 80%, precision of 82%, sensitivity of 73%, and specificity of 87%. Notably, our analysis revealed that interview-based texts were more diagnostically effective than story-recounting texts. This underscores the altered social language use in individuals with AS, a csrucial aspect in distinguishing AS from non-AS conditions. Our findings demonstrate that lexicogrammatical analysis is a promising addition to traditional AS diagnostic methods. This approach suggests the possibility of using natural language processing to detect distinctive linguistic patterns in AS, aiming to enhance diagnostic accuracy for differentiating AS from non-AS in adolescents and adults. 
653 |a Interviews 
653 |a Language 
653 |a Diagnostic tests 
653 |a Adolescents 
653 |a Syntax 
653 |a Language patterns 
653 |a Communication 
653 |a Autism 
653 |a Grammar lexicon relationship 
653 |a Machine learning 
653 |a Text analysis 
653 |a Phonology 
653 |a Cognition & reasoning 
653 |a Learning algorithms 
653 |a Heterogeneity 
653 |a Linguistics 
653 |a Accuracy 
653 |a Texts 
653 |a Corpus analysis 
653 |a Tags 
653 |a Natural language processing 
653 |a Effectiveness 
653 |a Adults 
653 |a Caregivers 
653 |a Executive function 
653 |a Semantics 
653 |a Medical diagnosis 
653 |a Autistic adolescents 
653 |a Multidimensional approach 
653 |a Language usage 
653 |a Textual analysis 
653 |a Spoken language 
653 |a Social 
700 1 |a Hanawa, Kazuaki 
700 1 |a Saito, Manabu 
700 1 |a Nakamura, Kazuhiko 
773 0 |t PLoS One  |g vol. 19, no. 9 (Sep 2024), p. e0311209 
786 0 |d ProQuest  |t Medical Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3110686789/abstract/embedded/ITVB7CEANHELVZIZ?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3110686789/fulltext/embedded/ITVB7CEANHELVZIZ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3110686789/fulltextPDF/embedded/ITVB7CEANHELVZIZ?source=fedsrch