Deep Learning and Machine Learning, Advancing Big Data Analytics and Management: Object-Oriented Programming

Guardado en:
Detalles Bibliográficos
Publicado en:arXiv.org (Dec 7, 2024), p. n/a
Autor principal: Wang, Tianyang
Otros Autores: Bi, Ziqian, Chen, Keyu, Xu, Jiawei, Niu, Qian, Liu, Junyu, Peng, Benji, Li, Ming, Zhang, Sen, Pan, Xuanhe, Wang, Jinlang, Feng, Pohsun, Wen, Yizhu, Liu, Ming
Publicado:
Cornell University Library, arXiv.org
Materias:
Acceso en línea:Citation/Abstract
Full text outside of ProQuest
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3111723490
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3111723490 
045 0 |b d20241207 
100 1 |a Wang, Tianyang 
245 1 |a Deep Learning and Machine Learning, Advancing Big Data Analytics and Management: Object-Oriented Programming 
260 |b Cornell University Library, arXiv.org  |c Dec 7, 2024 
513 |a Working Paper 
520 3 |a Object-Oriented Programming (OOP) has become a crucial paradigm for managing the growing complexity of modern software systems, particularly in fields like machine learning, deep learning, large language models (LLM), and data analytics. This work provides a comprehensive introduction to the integration of OOP techniques within these domains, with a focus on improving code modularity, maintainability, and scalability. We begin by outlining the evolution of computing and the rise of OOP, followed by an in-depth discussion of key OOP principles such as encapsulation, inheritance, polymorphism, and abstraction. The practical application of these principles is demonstrated using Python, a widely adopted language in AI and data science. Furthermore, we examine how design patterns and modular programming can be employed to enhance the structure and efficiency of machine learning systems. In subsequent sections, we apply these OOP concepts to real-world AI tasks, including the encapsulation of preprocessing workflows, machine learning model training, and evaluation. Detailed examples illustrate how OOP can be used to build reusable, scalable machine learning systems while maintaining code clarity and reducing redundancy.This work is intended to serve as a bridge for both beginners and experienced developers, equipping them with the necessary knowledge to apply OOP methodologies in AI-driven projects, ultimately fostering the development of more robust and maintainable systems. 
653 |a Object oriented programming 
653 |a Modularity 
653 |a Polymorphism 
653 |a Data analysis 
653 |a Maintainability 
653 |a Machine learning 
653 |a Encapsulation 
653 |a Deep learning 
653 |a Large language models 
653 |a Big Data 
653 |a Building codes 
653 |a Bridge maintenance 
653 |a Data science 
653 |a Modular systems 
653 |a Python 
653 |a Modular structures 
653 |a Artificial intelligence 
653 |a Redundancy 
700 1 |a Bi, Ziqian 
700 1 |a Chen, Keyu 
700 1 |a Xu, Jiawei 
700 1 |a Niu, Qian 
700 1 |a Liu, Junyu 
700 1 |a Peng, Benji 
700 1 |a Li, Ming 
700 1 |a Zhang, Sen 
700 1 |a Pan, Xuanhe 
700 1 |a Wang, Jinlang 
700 1 |a Feng, Pohsun 
700 1 |a Wen, Yizhu 
700 1 |a Liu, Ming 
773 0 |t arXiv.org  |g (Dec 7, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3111723490/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2409.19916