Group & Reweight: A Novel Cost-Sensitive Approach to Mitigating Class Imbalance in Network Traffic Classification

Salvato in:
Dettagli Bibliografici
Pubblicato in:arXiv.org (Dec 12, 2024), p. n/a
Autore principale: Du, Wumei
Altri autori: Liang, Dong, Lv, Yiqin, Liang, Xingxing, Wu, Guanlin, Wang, Qi, Xie, Zheng
Pubblicazione:
Cornell University Library, arXiv.org
Soggetti:
Accesso online:Citation/Abstract
Full text outside of ProQuest
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!

MARC

LEADER 00000nab a2200000uu 4500
001 3111726644
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3111726644 
045 0 |b d20241212 
100 1 |a Du, Wumei 
245 1 |a Group & Reweight: A Novel Cost-Sensitive Approach to Mitigating Class Imbalance in Network Traffic Classification 
260 |b Cornell University Library, arXiv.org  |c Dec 12, 2024 
513 |a Working Paper 
520 3 |a Internet services have led to the eruption of network traffic, and machine learning on these Internet data has become an indispensable tool, especially when the application is risk-sensitive. This paper focuses on network traffic classification in the presence of severe class imbalance. Such a distributional trait mostly drifts the optimal decision boundary and results in an unsatisfactory solution. This raises safety concerns in the network traffic field when previous class imbalance methods hardly deal with numerous minority malicious classes. To alleviate these effects, we design a \textit{group \& reweight} strategy for alleviating class imbalance. Inspired by the group distributionally optimization framework, our approach heuristically clusters classes into groups, iteratively updates the non-parametric weights for separate classes, and optimizes the learning model by minimizing reweighted losses. We theoretically interpret the optimization process from a Stackelberg game and perform extensive experiments on typical benchmarks. Results show that our approach can not only suppress the negative effect of class imbalance but also improve the comprehensive performance in prediction. 
653 |a Data analysis 
653 |a Machine learning 
653 |a Classification 
653 |a Robustness (mathematics) 
653 |a Internet 
653 |a Design optimization 
653 |a Communications traffic 
653 |a Optimization 
700 1 |a Liang, Dong 
700 1 |a Lv, Yiqin 
700 1 |a Liang, Xingxing 
700 1 |a Wu, Guanlin 
700 1 |a Wang, Qi 
700 1 |a Xie, Zheng 
773 0 |t arXiv.org  |g (Dec 12, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3111726644/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2409.19214