ImageFolder: Autoregressive Image Generation with Folded Tokens

Guardat en:
Dades bibliogràfiques
Publicat a:arXiv.org (Dec 3, 2024), p. n/a
Autor principal: Li, Xiang
Altres autors: Qiu, Kai, Chen, Hao, Kuen, Jason, Gu, Jiuxiang, Bhiksha Raj, Lin, Zhe
Publicat:
Cornell University Library, arXiv.org
Matèries:
Accés en línia:Citation/Abstract
Full text outside of ProQuest
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3112655724
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3112655724 
045 0 |b d20241203 
100 1 |a Li, Xiang 
245 1 |a ImageFolder: Autoregressive Image Generation with Folded Tokens 
260 |b Cornell University Library, arXiv.org  |c Dec 3, 2024 
513 |a Working Paper 
520 3 |a Image tokenizers are crucial for visual generative models, e.g., diffusion models (DMs) and autoregressive (AR) models, as they construct the latent representation for modeling. Increasing token length is a common approach to improve the image reconstruction quality. However, tokenizers with longer token lengths are not guaranteed to achieve better generation quality. There exists a trade-off between reconstruction and generation quality regarding token length. In this paper, we investigate the impact of token length on both image reconstruction and generation and provide a flexible solution to the tradeoff. We propose ImageFolder, a semantic tokenizer that provides spatially aligned image tokens that can be folded during autoregressive modeling to improve both generation efficiency and quality. To enhance the representative capability without increasing token length, we leverage dual-branch product quantization to capture different contexts of images. Specifically, semantic regularization is introduced in one branch to encourage compacted semantic information while another branch is designed to capture the remaining pixel-level details. Extensive experiments demonstrate the superior quality of image generation and shorter token length with ImageFolder tokenizer. 
653 |a Regularization 
653 |a Semantics 
653 |a Image quality 
653 |a Image reconstruction 
653 |a Image enhancement 
653 |a Image processing 
653 |a Modelling 
653 |a Autoregressive processes 
700 1 |a Qiu, Kai 
700 1 |a Chen, Hao 
700 1 |a Kuen, Jason 
700 1 |a Gu, Jiuxiang 
700 1 |a Bhiksha Raj 
700 1 |a Lin, Zhe 
773 0 |t arXiv.org  |g (Dec 3, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3112655724/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2410.01756