Blind Reconstruction of Binary Primitive BCH Code Based on Error Codeword Correction

Salvato in:
Dettagli Bibliografici
Pubblicato in:The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Conference Proceedings (2024)
Autore principale: Mu, Haochen
Altri autori: Wu, Yunzhi, Li, Li
Pubblicazione:
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Soggetti:
Accesso online:Citation/Abstract
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!

MARC

LEADER 00000nab a2200000uu 4500
001 3112913763
003 UK-CbPIL
024 7 |a 10.1109/Ucom62433.2024.10695907  |2 doi 
035 |a 3112913763 
045 2 |b d20240101  |b d20241231 
084 |a 228229  |2 nlm 
100 1 |a Mu, Haochen  |u School of Information Science and Technology, Southwest Jiaotong University,Chengdu,China 
245 1 |a Blind Reconstruction of Binary Primitive BCH Code Based on Error Codeword Correction 
260 |b The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  |c 2024 
513 |a Conference Proceedings 
520 3 |a Conference Title: 2024 International Conference on Ubiquitous Communication (Ucom)Conference Start Date: 2024, July 5 Conference End Date: 2024, July 7 Conference Location: Xi'an, ChinaIn this paper, a blind reconstruction method of binary primitive BCH code is proposed, which can identify the generator polynomial of BCH code from received noisy bitstreams. Firstly, error codewords are exposed according to the fact that correct codeword polynomials shall have consecutive roots. Secondly, the recovery of error codewords will be fast completed by leveraging the parity-check matrix of BCH code. Then, the consecutive roots of BCH code are determined by measuring the discrepancy between their experimental occurring probability and their theoretical occurring probability. Finally, the generator polynomial of BCH code are reconstructed based on the detected roots. Simulation results show that for the BCH codes whose error correction capability exceed 2 bits, the proposed method outperforms the reconstruction method using single-error correction. 
653 |a BCH codes 
653 |a Reconstruction 
653 |a Binary codes 
653 |a Error correction 
653 |a Error detection 
653 |a Polynomials 
653 |a Economic 
700 1 |a Wu, Yunzhi  |u School of Information Science and Technology, Southwest Jiaotong University,Chengdu,China 
700 1 |a Li, Li  |u School of Information Science and Technology, Southwest Jiaotong University,Chengdu,China 
773 0 |t The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Conference Proceedings  |g (2024) 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3112913763/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch