Infrared thermography–based framework for in situ classification of underextrusions in material extrusion

Gorde:
Xehetasun bibliografikoak
Argitaratua izan da:The International Journal of Advanced Manufacturing Technology vol. 134, no. 11-12 (Oct 2024), p. 5631
Egile nagusia: Sadaf, Asef Ishraq
Beste egile batzuk: Ahmed, Hossain, Khan, Mujibur Rahman
Argitaratua:
Springer Nature B.V.
Gaiak:
Sarrera elektronikoa:Citation/Abstract
Full Text - PDF
Etiketak: Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!

MARC

LEADER 00000nab a2200000uu 4500
001 3112960551
003 UK-CbPIL
022 |a 0268-3768 
022 |a 1433-3015 
024 7 |a 10.1007/s00170-024-14512-9  |2 doi 
035 |a 3112960551 
045 2 |b d20241001  |b d20241031 
100 1 |a Sadaf, Asef Ishraq  |u Georgia Southern University, Department of Mechanical Engineering, Statesboro, USA (GRID:grid.256302.0) (ISNI:0000 0001 0657 525X) 
245 1 |a Infrared thermography–based framework for in situ classification of underextrusions in material extrusion 
260 |b Springer Nature B.V.  |c Oct 2024 
513 |a Journal Article 
520 3 |a Material extrusion (ME) is a widely used additive manufacturing (AM) technique, known for its versatility, cost-effectiveness, and ability to produce complex parts on-demand with greater customization and reduced waste. However, the process is impeded by unpredictable factors causing defects such as voids, overextrusions, and underextrusions, which smart manufacturing in Industry 4.0 aims to mitigate. In this study, we report a novel infrared (IR) thermography–based continuous data acquisition and processing framework that can differentiate various levels of in situ underextrusions. While existing underextrusion detection techniques require mid-print interruptions, our framework detects defects without any interruption. The methodology includes integrating an IR camera into a commercially available extrusion-based 3D printer for continuous in-printing data acquisition. The G-code for printing a rectangular block is intentionally modified to induce various levels of known underextrusions. Additionally, a novel signal processing algorithm is developed to automate real-time data processing and analysis, including signal normalization, artifact removal, and feature extraction. Results are obtained by developing a correlation matrix to compare the correlation coefficients of time series thermal data from the printed samples. Time-domain thermal features are also extracted to identify extrusion levels of 25%, 50%, 75%, and 100%. This study demonstrates that by utilizing the proposed framework, thermal data can identify various extrusion levels without mid-print interruption and determine the severity of process deviations within 5 s. This framework paves the way for integrating a thermal data-driven closed-loop monitoring and adjustment system capable of producing first-time-ready parts. 
653 |a Feature extraction 
653 |a Printers (data processing) 
653 |a Data processing 
653 |a Signal processing 
653 |a Data acquisition 
653 |a G codes 
653 |a Continuous extrusion 
653 |a Industry 4.0 
653 |a Closed loops 
653 |a Thermography 
653 |a Algorithms 
653 |a Infrared cameras 
653 |a Manufacturing 
653 |a Real time 
653 |a Infrared imaging 
653 |a Defects 
653 |a Correlation coefficients 
653 |a Cost effectiveness 
653 |a Correlation analysis 
653 |a Design of experiments 
653 |a Advanced manufacturing technologies 
653 |a Printing 
653 |a Automation 
653 |a Additive manufacturing 
653 |a Cameras 
653 |a Rapid prototyping 
653 |a Temperature 
653 |a Sensors 
653 |a Cost analysis 
700 1 |a Ahmed, Hossain  |u Georgia Southern University, Department of Mechanical Engineering, Statesboro, USA (GRID:grid.256302.0) (ISNI:0000 0001 0657 525X) 
700 1 |a Khan, Mujibur Rahman  |u Georgia Southern University, Department of Mechanical Engineering, Statesboro, USA (GRID:grid.256302.0) (ISNI:0000 0001 0657 525X) 
773 0 |t The International Journal of Advanced Manufacturing Technology  |g vol. 134, no. 11-12 (Oct 2024), p. 5631 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3112960551/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3112960551/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch