MeDeT: Medical Device Digital Twins Creation with Few-shot Meta-learning

Guardat en:
Dades bibliogràfiques
Publicat a:arXiv.org (Dec 4, 2024), p. n/a
Autor principal: Hassan Sartaj
Altres autors: Ali, Shaukat, Gjøby, Julie Marie
Publicat:
Cornell University Library, arXiv.org
Matèries:
Accés en línia:Citation/Abstract
Full text outside of ProQuest
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3113848364
003 UK-CbPIL
022 |a 2331-8422 
024 7 |a 10.1145/3708534  |2 doi 
035 |a 3113848364 
045 0 |b d20241204 
100 1 |a Hassan Sartaj 
245 1 |a MeDeT: Medical Device Digital Twins Creation with Few-shot Meta-learning 
260 |b Cornell University Library, arXiv.org  |c Dec 4, 2024 
513 |a Working Paper 
520 3 |a Testing healthcare Internet of Things (IoT) applications at system and integration levels necessitates integrating numerous medical devices of various types. Challenges of incorporating medical devices are: (i) their continuous evolution, making it infeasible to include all device variants, and (ii) rigorous testing at scale requires multiple devices and their variants, which is time-intensive, costly, and impractical. Our collaborator, Oslo City's health department, faced these challenges in developing automated test infrastructure, which our research aims to address. In this context, we propose a meta-learning-based approach (MeDeT) to generate digital twins (DTs) of medical devices and adapt DTs to evolving devices. We evaluate MeDeT in OsloCity's context using five widely-used medical devices integrated with a real-world healthcare IoT application. Our evaluation assesses MeDeT's ability to generate and adapt DTs across various devices and versions using different few-shot methods, the fidelity of these DTs, the scalability of operating 1000 DTs concurrently, and the associated time costs. Results show that MeDeT can generate DTs with over 96% fidelity, adapt DTs to different devices and newer versions with reduced time cost (around one minute), and operate 1000 DTs in a scalable manner while maintaining the fidelity level, thus serving in place of physical devices for testing. 
653 |a Accuracy 
653 |a Medical electronics 
653 |a Medical equipment 
653 |a Medical devices 
653 |a Internet of medical things 
653 |a Learning 
653 |a Health care 
653 |a Digital twins 
653 |a Context 
653 |a Internet of Things 
700 1 |a Ali, Shaukat 
700 1 |a Gjøby, Julie Marie 
773 0 |t arXiv.org  |g (Dec 4, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3113848364/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2410.03585