A Diagrammatic Algebra for Program Logics

Guardado en:
Detalles Bibliográficos
Publicado en:arXiv.org (Oct 4, 2024), p. n/a
Autor principal: Bonchi, Filippo
Otros Autores: Alessandro Di Giorgio, Elena Di Lavore
Publicado:
Cornell University Library, arXiv.org
Materias:
Acceso en línea:Citation/Abstract
Full text outside of ProQuest
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3113849708
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3113849708 
045 0 |b d20241004 
100 1 |a Bonchi, Filippo 
245 1 |a A Diagrammatic Algebra for Program Logics 
260 |b Cornell University Library, arXiv.org  |c Oct 4, 2024 
513 |a Working Paper 
520 3 |a Tape diagrams provide a convenient notation for arrows of rig categories, i.e., categories equipped with two monoidal products, \(\oplus\) and \(\otimes\), where \(\otimes\) distributes over \(\oplus \). In this work, we extend tape diagrams with traces over \(\oplus\) in order to deal with iteration in imperative programming languages. More precisely, we introduce Kleene-Cartesian bicategories, namely rig categories where the monoidal structure provided by \(\otimes\) is a cartesian bicategory, while the one provided by \(\oplus\) is what we name a Kleene bicategory. We show that the associated language of tape diagrams is expressive enough to deal with imperative programs and the corresponding laws provide a proof system that is at least as powerful as the one of Hoare logic. 
653 |a Categories 
653 |a Imperative programming 
653 |a Programming languages 
653 |a Cartesian coordinates 
700 1 |a Alessandro Di Giorgio 
700 1 |a Elena Di Lavore 
773 0 |t arXiv.org  |g (Oct 4, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3113849708/abstract/embedded/2AXJIZYYTBW5RQEH?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2410.03561