On the multi‐parameters identification of concrete dams: A novel stochastic inverse approach

Salvato in:
Dettagli Bibliografici
Pubblicato in:International Journal for Numerical and Analytical Methods in Geomechanics vol. 48, no. 16 (Nov 2024), p. 3792
Autore principale: Lin, Chaoning
Altri autori: Du, Xiaohu, Chen, Siyu, Li, Tongchun, Zhou, Xinbo, P H A J M van Gelder
Pubblicazione:
Wiley Subscription Services, Inc.
Soggetti:
Accesso online:Citation/Abstract
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!

MARC

LEADER 00000nab a2200000uu 4500
001 3114397793
003 UK-CbPIL
022 |a 0363-9061 
022 |a 1096-9853 
024 7 |a 10.1002/nag.3812  |2 doi 
035 |a 3114397793 
045 2 |b d20241101  |b d20241130 
084 |a 163830  |2 nlm 
100 1 |a Lin, Chaoning  |u College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing, China 
245 1 |a On the multi‐parameters identification of concrete dams: A novel stochastic inverse approach 
260 |b Wiley Subscription Services, Inc.  |c Nov 2024 
513 |a Journal Article 
520 3 |a This paper introduces a novel stochastic inverse method that utilizes perturbation theory and advanced intelligence techniques to solve the multi‐parameter identification problem of concrete dams using displacement field monitoring data. The proposed method considers the uncertainties associated with the dam displacement monitoring data, which are comprised of two distinct sources: the first is related to stochastic mechanical properties of the dam, and the second is due to observation errors. The displacements at different measuring points generated by dam mechanical properties exhibit spatial correlation, while the observation errors at different points can be considered statistically random. In this context, the inversion formulas are derived for unknown stochastic parameters of the dam by combining perturbation equations and Taylor expansion methods. An improved meta‐heuristic optimization method is employed to identify the mean of stochastic parameters, while mathematical and statistical methods are used to determine the variance of stochastic parameters. The feasibility of the proposed method is verified through numerical examples of a typical dam section under different conditions. Additionally, the paper discusses and demonstrates the applicability of this method in a practical dam project. Results indicate that this method can effectively capture the uncertainty of dam's mechanical properties and separates them from observation errors. 
653 |a Concrete dams 
653 |a Parameters 
653 |a Mechanical properties 
653 |a Mathematics 
653 |a Parameter identification 
653 |a Dams 
653 |a Inverse method 
653 |a Statistical methods 
653 |a Taylor series 
653 |a Errors 
653 |a Monitoring 
653 |a Parameter uncertainty 
653 |a Perturbation theory 
653 |a Heuristic methods 
653 |a Project feasibility 
653 |a Environmental 
700 1 |a Du, Xiaohu  |u China Renewable Energy Engineering Institute, Beijing, China 
700 1 |a Chen, Siyu  |u Dam Safety Management Department, Nanjing Hydraulic Research Institute, Nanjing, China; Key Laboratory of Reservoir Dam Safety, Ministry of Water Resources, Nanjing, China 
700 1 |a Li, Tongchun  |u College of Water Conservancy and Hydropower Engineering, Hohai University, Nanjing, China 
700 1 |a Zhou, Xinbo  |u China Renewable Energy Engineering Institute, Beijing, China 
700 1 |a P H A J M van Gelder  |u Faculty of Technology, Policy, and Management, Delft University of Technology, Delft, the Netherlands 
773 0 |t International Journal for Numerical and Analytical Methods in Geomechanics  |g vol. 48, no. 16 (Nov 2024), p. 3792 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3114397793/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch