MARC

LEADER 00000nab a2200000uu 4500
001 3115122223
003 UK-CbPIL
022 |a 1472-6920 
024 7 |a 10.1186/s12909-024-06058-x  |2 doi 
035 |a 3115122223 
045 2 |b d20240101  |b d20241231 
084 |a 58506  |2 nlm 
100 1 |a Nata Pratama Hardjo Lugito 
245 1 |a Readiness, knowledge, and perception towards artificial intelligence of medical students at faculty of medicine, Pelita Harapan University, Indonesia: a cross sectional study 
260 |b Springer Nature B.V.  |c 2024 
513 |a Journal Article 
520 3 |a IntroductionArtificial intelligence (AI) enables machines to perform many complicated human skills which require various levels of human intelligence. In the field of medicine, AI helps physicians in making diagnoses and treatments for patients with more efficiency, accuracy, and precision. In order to prepare medical students who are the future healthcare workforce, it is important to enhance their readiness, knowledge and perception toward AI. This study aims to assess Pelita Harapan University (PHU) medical students’ readiness, knowledge, and perception toward AI.MethodsA quantitative cross-sectional study was conducted to assess respondents’ readiness, knowledge and perception toward AI. An online questionnaire was distributed via Google Forms to all batch of medical students. Medical Artificial Intelligence Readiness Scale for Medical Students (MAIRS-MS) questionnaire was used to evaluate AI readiness, while an adapted questionnaires was used to evaluate knowledge and perception toward AI. Data were then analyzed using IBM Statistical Package for Social Sciences (SPSS) version 23.0.ResultsA total of 650 respondents were included in this study. Most respondents were in pre-clinical phase (88%) while the remaining were in clinical phase (12%). Overall, the total mean score for AI readiness was 73.34 of 100. Respondents had a mean score 24.52 ± 5.26 of 40, 27.78 ± 4.65 of 40, 10.57 ± 2.07 of 15, and 10.47 ± 2.00 of 15 in the cognitive, ability, vision, and ethics domain respectively. Generally, respondents had sufficient knowledge and positive perception toward AI. There were also significant correlation between readiness and knowledge with gender, having studied coding previously in high school, and having family or close friends working in AI field. Social media also had a good influence on enchancing readiness in the domain of ability and ethics, and perception towards AI.ConclusionMedical students of PHU mostly showed neutral to favorable response on readiness, knowledge, and perception towards AI. Incorporating AI into high school and medical curriculum is an important step to prepare medical students’ encounter and partnership with AI as the future workforce in medicine. 
651 4 |a Malaysia 
651 4 |a Indonesia 
653 |a Accuracy 
653 |a Curricula 
653 |a Questionnaires 
653 |a Likert scale 
653 |a Medical students 
653 |a Ethics 
653 |a Patients 
653 |a Electronic health records 
653 |a Medicine 
653 |a Perceptions 
653 |a Artificial intelligence 
653 |a Knowledge 
653 |a Data collection 
653 |a Attitudes 
653 |a Education 
653 |a Medical education 
653 |a Cross-sectional studies 
653 |a Paying for College 
653 |a Basic Skills 
653 |a Positive Attitudes 
653 |a Physicians 
653 |a Negative Attitudes 
653 |a College Faculty 
653 |a Likert Scales 
653 |a Elective Courses 
653 |a Medical Evaluation 
653 |a Computer Oriented Programs 
653 |a Outcome Based Education 
653 |a Knowledge Level 
653 |a Data Analysis 
653 |a Allied Health Occupations Education 
653 |a Language Processing 
653 |a Ability Identification 
653 |a Educational Background 
653 |a Algorithms 
700 1 |a Cucunawangsih, Cucunawangsih 
700 1 |a Suryadinata, Neneng 
700 1 |a Kurniawan, Andree 
700 1 |a Rhendy Wijayanto 
700 1 |a Sungono, Veli 
700 1 |a Sabran, Mohammad Zuhriansyah 
700 1 |a Albert, Nikolaus 
700 1 |a Claresta, Janice Budianto 
700 1 |a Rubismo, Kenza Yogasvara 
700 1 |a Nyoman Bagus Satcitta Ananda Purushotama 
700 1 |a Zebua, Alfred 
773 0 |t BMC Medical Education  |g vol. 24 (2024), p. 1 
786 0 |d ProQuest  |t Healthcare Administration Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3115122223/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3115122223/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3115122223/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch