TopoTune : A Framework for Generalized Combinatorial Complex Neural Networks

Guardat en:
Dades bibliogràfiques
Publicat a:arXiv.org (Oct 11, 2024), p. n/a
Autor principal: Papillon, Mathilde
Altres autors: Bernárdez, Guillermo, Battiloro, Claudio, Miolane, Nina
Publicat:
Cornell University Library, arXiv.org
Matèries:
Accés en línia:Citation/Abstract
Full text outside of ProQuest
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3115207135
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3115207135 
045 0 |b d20241011 
100 1 |a Papillon, Mathilde 
245 1 |a TopoTune : A Framework for Generalized Combinatorial Complex Neural Networks 
260 |b Cornell University Library, arXiv.org  |c Oct 11, 2024 
513 |a Working Paper 
520 3 |a Graph Neural Networks (GNNs) excel in learning from relational datasets, processing node and edge features in a way that preserves the symmetries of the graph domain. However, many complex systems--such as biological or social networks--involve multiway complex interactions that are more naturally represented by higher-order topological spaces. The emerging field of Topological Deep Learning (TDL) aims to accommodate and leverage these higher-order structures. Combinatorial Complex Neural Networks (CCNNs), fairly general TDL models, have been shown to be more expressive and better performing than GNNs. However, differently from the graph deep learning ecosystem, TDL lacks a principled and standardized framework for easily defining new architectures, restricting its accessibility and applicability. To address this issue, we introduce Generalized CCNNs (GCCNs), a novel simple yet powerful family of TDL models that can be used to systematically transform any (graph) neural network into its TDL counterpart. We prove that GCCNs generalize and subsume CCNNs, while extensive experiments on a diverse class of GCCNs show that these architectures consistently match or outperform CCNNs, often with less model complexity. In an effort to accelerate and democratize TDL, we introduce TopoTune, a lightweight software that allows practitioners to define, build, and train GCCNs with unprecedented flexibility and ease. 
653 |a Complex systems 
653 |a Deep learning 
653 |a Complexity 
653 |a Machine learning 
653 |a Social networks 
653 |a Combinatorial analysis 
653 |a Graphical representations 
653 |a Graph neural networks 
653 |a Neural networks 
653 |a Topology 
700 1 |a Bernárdez, Guillermo 
700 1 |a Battiloro, Claudio 
700 1 |a Miolane, Nina 
773 0 |t arXiv.org  |g (Oct 11, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3115207135/abstract/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2410.06530