Restructuring Vector Quantization with the Rotation Trick

Збережено в:
Бібліографічні деталі
Опубліковано в::arXiv.org (Oct 8, 2024), p. n/a
Автор: Fifty, Christopher
Інші автори: Junkins, Ronald G, Duan, Dennis, Iger, Aniketh, Liu, Jerry W, Amid, Ehsan, Thrun, Sebastian, Ré, Christopher
Опубліковано:
Cornell University Library, arXiv.org
Предмети:
Онлайн доступ:Citation/Abstract
Full text outside of ProQuest
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!

MARC

LEADER 00000nab a2200000uu 4500
001 3115225513
003 UK-CbPIL
022 |a 2331-8422 
035 |a 3115225513 
045 0 |b d20241008 
100 1 |a Fifty, Christopher 
245 1 |a Restructuring Vector Quantization with the Rotation Trick 
260 |b Cornell University Library, arXiv.org  |c Oct 8, 2024 
513 |a Working Paper 
520 3 |a Vector Quantized Variational AutoEncoders (VQ-VAEs) are designed to compress a continuous input to a discrete latent space and reconstruct it with minimal distortion. They operate by maintaining a set of vectors -- often referred to as the codebook -- and quantizing each encoder output to the nearest vector in the codebook. However, as vector quantization is non-differentiable, the gradient to the encoder flows around the vector quantization layer rather than through it in a straight-through approximation. This approximation may be undesirable as all information from the vector quantization operation is lost. In this work, we propose a way to propagate gradients through the vector quantization layer of VQ-VAEs. We smoothly transform each encoder output into its corresponding codebook vector via a rotation and rescaling linear transformation that is treated as a constant during backpropagation. As a result, the relative magnitude and angle between encoder output and codebook vector becomes encoded into the gradient as it propagates through the vector quantization layer and back to the encoder. Across 11 different VQ-VAE training paradigms, we find this restructuring improves reconstruction metrics, codebook utilization, and quantization error. Our code is available at https://github.com/cfifty/rotation_trick. 
653 |a Approximation 
653 |a Euclidean space 
653 |a Linear transformations 
653 |a Rescaling 
653 |a Coders 
653 |a Rotation 
653 |a Back propagation 
700 1 |a Junkins, Ronald G 
700 1 |a Duan, Dennis 
700 1 |a Iger, Aniketh 
700 1 |a Liu, Jerry W 
700 1 |a Amid, Ehsan 
700 1 |a Thrun, Sebastian 
700 1 |a Ré, Christopher 
773 0 |t arXiv.org  |g (Oct 8, 2024), p. n/a 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3115225513/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full text outside of ProQuest  |u http://arxiv.org/abs/2410.06424