MARC

LEADER 00000nab a2200000uu 4500
001 3115239052
003 UK-CbPIL
022 |a 1866-3508 
022 |a 1866-3516 
024 7 |a 10.5194/essd-16-4619-2024  |2 doi 
035 |a 3115239052 
045 2 |b d20240101  |b d20241231 
084 |a 123624  |2 nlm 
100 1 |a Wang, Jie  |u College of Grassland Science and Technology, China Agricultural University, Beijing 100093, China 
245 1 |a Annual maps of forest and evergreen forest in the contiguous United States during 2015–2017 from analyses of PALSAR-2 and Landsat images 
260 |b Copernicus GmbH  |c 2024 
513 |a Journal Article 
520 3 |a Annual forest maps at a high spatial resolution are necessary for forest management and conservation. Large uncertainties remain in existing forest maps because of different forest definitions, satellite datasets, in situ training datasets, and mapping algorithms. In this study, we generated annual maps of forest and evergreen forest at a 30 <inline-formula>m</inline-formula> resolution in the contiguous United States (CONUS) during 2015–2017 by integrating microwave data (Phased Array type L-band Synthetic Aperture Radar – PALSAR-2) and optical data (Landsat) using knowledge-based algorithms. The resultant PALSAR-2/Landsat-based forest maps (PL-Forest) were compared with five major forest datasets from the CONUS: (1)&#xa0;the Landsat tree canopy cover from the Global Forest Watch dataset (GFW-Forest), (2)&#xa0;the Landsat Vegetation Continuous Field dataset (Landsat VCF-Forest), (3)&#xa0;the National Land Cover Database 2016 (NLCD-Forest), (4)&#xa0;the Japan Aerospace Exploration Agency forest maps (JAXA-Forest), and (5)&#xa0;the Forest Inventory and Analysis (FIA) data from the U.S. Department of Agriculture (USDA) Forest Service (FIA-Forest). The forest structure data (tree canopy height and canopy coverage) derived from the lidar observations of the Geoscience Laser Altimetry System (GLAS) on board NASA's Ice, Cloud, and land Elevation Satellite (ICESat-1) were used to assess the five forest cover datasets derived from satellite images. Using the forest definition of the Food and Agricultural Organization (FAO) of the United Nations, more forest pixels from the PL-Forest maps meet the FAO's forest definition than the GFW-Forest, Landsat VCF-Forest, and JAXA-Forest datasets. Forest area estimates from PL-Forest were close to those from the FIA-Forest statistics, higher than GFW-Forest and NLCD-Forest, and lower than Landsat VCF-Forest, which highlights the potential of using both the PL-Forest and FIA-Forest datasets to support the FAO's Global Forest Resources Assessment. Furthermore, the PALSAR-2/Landsat-based annual evergreen forest maps (PL-Evergreen Forest) showed reasonable consistency with the NLCD product. The comparison of the most widely used forest datasets offered insights to employ appropriate products for relevant research and management activities across local to regional and national scales. The datasets generated in this study are available at https://doi.org/10.6084/m9.figshare.21270261 (Wang, 2024). The improved annual maps of forest and evergreen forest at 30 <inline-formula>m</inline-formula> over the CONUS can be used to support forest management, conservation, and resource assessments. 
610 4 |a University of Maryland US Geological Survey Aerospace Exploration Agency-Japan Department of Agriculture World Resources Institute 
651 4 |a United States--US 
651 4 |a Japan 
651 4 |a Asia 
653 |a Forest management 
653 |a Datasets 
653 |a Altimetry 
653 |a Landsat 
653 |a Satellite imagery 
653 |a Lidar 
653 |a Climate change 
653 |a Canopies 
653 |a Vegetation 
653 |a Synthetic aperture radar 
653 |a Conservation 
653 |a Remote sensing 
653 |a Land cover 
653 |a Forest products 
653 |a Regions 
653 |a Radar data 
653 |a Algorithms 
653 |a Annual 
653 |a Forest resources 
653 |a Satellites 
653 |a Japanese space program 
653 |a Lidar observations 
653 |a Maps 
653 |a Radar arrays 
653 |a Plant cover 
653 |a Coniferous forests 
653 |a Spatial discrimination 
653 |a Statistical analysis 
653 |a Time series 
653 |a International organizations 
653 |a Computer centers 
653 |a Spatial resolution 
653 |a Sensors 
653 |a Phased arrays 
653 |a Canopy 
653 |a Land use 
653 |a Decision trees 
653 |a SAR (radar) 
653 |a Environmental 
700 1 |a Xiao, Xiangming  |u School of Biological Sciences, Center for Earth Observation and Modeling, University of Oklahoma, Norman, OK 73019, USA 
700 1 |a Qin, Yuanwei  |u School of Biological Sciences, Center for Earth Observation and Modeling, University of Oklahoma, Norman, OK 73019, USA 
700 1 |a Dong, Jinwei  |u Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China 
700 1 |a Zhang, Geli  |u College of Land Science and Technology, China Agricultural University, Beijing 100193, China 
700 1 |a Yang, Xuebin  |u School of Biological Sciences, Center for Earth Observation and Modeling, University of Oklahoma, Norman, OK 73019, USA 
700 1 |a Wu, Xiaocui  |u Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA 
700 1 |a Biradar, Chandrashekhar  |u Center for International Forestry Research (CIFOR) and World Agroforestry Center (ICRAF), Asia Continental Program, New Delhi, India 
700 1 |a Hu, Yang  |u School of Ecology and Environment, Ningxia University, Yinchuan 750021, China 
773 0 |t Earth System Science Data  |g vol. 16, no. 10 (2024), p. 4619 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3115239052/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3115239052/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3115239052/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch