Local Weather and Global Climate Data-Driven Long-Term Runoff Forecasting Based on Local–Global–Temporal Attention Mechanisms and Graph Attention Networks

Salvato in:
Dettagli Bibliografici
Pubblicato in:Remote Sensing vol. 16, no. 19 (2024), p. 3659
Autore principale: Yang, Binlin
Altri autori: Chen, Lu, Yi, Bin, Li, Siming, Leng, Zhiyuan
Pubblicazione:
MDPI AG
Soggetti:
Accesso online:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!

MARC

LEADER 00000nab a2200000uu 4500
001 3116659908
003 UK-CbPIL
022 |a 2072-4292 
024 7 |a 10.3390/rs16193659  |2 doi 
035 |a 3116659908 
045 2 |b d20240101  |b d20241231 
084 |a 231556  |2 nlm 
100 1 |a Yang, Binlin  |u School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; <email>bl_young@hust.edu.cn</email> (B.Y.); <email>yi_bin2020@hust.edu.cn</email> (B.Y.); <email>d202180554@hust.edu.cn</email> (S.L.); <email>d202280599@hust.edu.cn</email> (Z.L.); Hubei Key Laboratory of Digital Valley Science and Technology, Wuhan 430074, China 
245 1 |a Local Weather and Global Climate Data-Driven Long-Term Runoff Forecasting Based on Local–Global–Temporal Attention Mechanisms and Graph Attention Networks 
260 |b MDPI AG  |c 2024 
513 |a Journal Article 
520 3 |a The accuracy of long-term runoff models can be increased through the input of local weather variables and global climate indices. However, existing methods do not effectively extract important information from complex input factors across various temporal and spatial dimensions, thereby contributing to inaccurate predictions of long-term runoff. In this study, local–global–temporal attention mechanisms (LGTA) were proposed for capturing crucial information on global climate indices on monthly, annual, and interannual time scales. The graph attention network (GAT) was employed to extract geographical topological information of meteorological stations, based on remotely sensed elevation data. A long-term runoff prediction model was established based on long-short-term memory (LSTM) integrated with GAT and LGTA, referred to as GAT–LGTA–LSTM. The proposed model was compared to five comparative models (LGTA–LSTM, GAT–GTA–LSTM, GTA–LSTM, GAT–GA–LSTM, GA–LSTM). The models were applied to forecast the long-term runoff at Luning and Pingshan stations in China. The results indicated that the GAT–LGTA–LSTM model demonstrated the best forecasting performance among the comparative models. The Nash–Sutcliffe Efficiency (NSE) of GAT–LGTA–LSTM at the Luning and Pingshan stations reached 0.87 and 0.89, respectively. Compared to the GA–LSTM benchmark model, the GAT–LGTA–LSTM model demonstrated an average increase in NSE of 0.07, an average increase in Kling–Gupta Efficiency (KGE) of 0.08, and an average reduction in mean absolute percent error (MAPE) of 0.12. The excellent performance of the proposed model is attributed to the following: (1) local attention mechanism assigns a higher weight to key global climate indices at a monthly scale, enhancing the ability of global and temporal attention mechanisms to capture the critical information at annual and interannual scales and (2) the global attention mechanism integrated with GAT effectively extracts crucial temporal and spatial information from precipitation and remotely-sensed elevation data. Furthermore, attention visualization reveals that various global climate indices contribute differently to runoff predictions across distinct months. The global climate indices corresponding to specific seasons or months should be selected to forecast the respective monthly runoff. 
653 |a Accuracy 
653 |a Deep learning 
653 |a Annual precipitation 
653 |a Forecasting 
653 |a Balances (scales) 
653 |a Runoff 
653 |a Complex variables 
653 |a Weather 
653 |a Remote sensing 
653 |a Time series 
653 |a Weather forecasting 
653 |a Prediction models 
653 |a Global climate 
653 |a Weather stations 
653 |a Precipitation 
653 |a Spatial data 
653 |a Climatic data 
653 |a Climate models 
653 |a Runoff forecasting 
653 |a Neural networks 
653 |a Information processing 
653 |a Error reduction 
653 |a Hydrologic models 
653 |a Stream flow 
653 |a Elevation 
653 |a Climate prediction 
700 1 |a Chen, Lu  |u School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; <email>bl_young@hust.edu.cn</email> (B.Y.); <email>yi_bin2020@hust.edu.cn</email> (B.Y.); <email>d202180554@hust.edu.cn</email> (S.L.); <email>d202280599@hust.edu.cn</email> (Z.L.); Hubei Key Laboratory of Digital Valley Science and Technology, Wuhan 430074, China; School of Water Resources and Civil Engineering, Tibet Agricultural & Animal Husbandry University, Linzhi 860000, China 
700 1 |a Yi, Bin  |u School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; <email>bl_young@hust.edu.cn</email> (B.Y.); <email>yi_bin2020@hust.edu.cn</email> (B.Y.); <email>d202180554@hust.edu.cn</email> (S.L.); <email>d202280599@hust.edu.cn</email> (Z.L.); Hubei Key Laboratory of Digital Valley Science and Technology, Wuhan 430074, China 
700 1 |a Li, Siming  |u School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; <email>bl_young@hust.edu.cn</email> (B.Y.); <email>yi_bin2020@hust.edu.cn</email> (B.Y.); <email>d202180554@hust.edu.cn</email> (S.L.); <email>d202280599@hust.edu.cn</email> (Z.L.); Hubei Key Laboratory of Digital Valley Science and Technology, Wuhan 430074, China 
700 1 |a Leng, Zhiyuan  |u School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; <email>bl_young@hust.edu.cn</email> (B.Y.); <email>yi_bin2020@hust.edu.cn</email> (B.Y.); <email>d202180554@hust.edu.cn</email> (S.L.); <email>d202280599@hust.edu.cn</email> (Z.L.); Hubei Key Laboratory of Digital Valley Science and Technology, Wuhan 430074, China 
773 0 |t Remote Sensing  |g vol. 16, no. 19 (2024), p. 3659 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3116659908/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3116659908/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3116659908/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch